
THE SATURATION CONJECTURE (AFTER A.
KNUTSON AND T. TAO)

Autor(en): BUCH, Anders Skovsted / Fulton, William

Objekttyp: Article

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 46 (2000)

Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Persistenter Link: https://doi.org/10.5169/seals-64794

PDF erstellt am: 15.05.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-64794


L'Enseignement Mathématique, t. 46 (2000), p. 43-60

THE SATURATION CONJECTURE

(AFTER A. KNUTSON AND T. TAO)

by Anders Skovsted BUCH

(with an appendix by William Fulton)

The purpose of this exposition1 is to give a simple treatment of Knutson
and Tao's recent proof of the saturation conjecture [10].

A finite-dimensional irreducible polynomial representation of GL„(C) is

determined by its highest weight, which is a weakly decreasing sequence of
n non-negative integers, also called a partition [5, §8]. The irreducible
representation with highest weight À is denoted V\. The Littlewood-Richardson
coefficient cX(Jb is defined to be the multiplicity of Vv in the decomposition
of Va ® Vm into irreducibles. Define

Tn {(A, AU v) I CAm 0}

This set is important in numerous areas besides representation theory. In
Schubert calculus it describes when an intersection of Schubert cells must be

non-empty [5, §9.4]. In combinatorics, a triple is in Tn if and only if there
exists a Littlewood-Richardson skew tableau with shape v/\ and content p
[5, §5.2].

It is well known that Tn C Z3n is a semi-group under addition, a fact
which Zelevinsky attributes to Brion and Knop [12]. Klyachko has given [9]
a nice description of the saturation

f„={(A,/x,i/) [3A>0 : (NX,Np,Niy) G Tn}.

A triple (A,/x,i/) is in Tn if and only if the entries of A, p, and v satisfy
certain inequalities that come from Schubert calculus (see §5 and [6]). This
made the following conjecture particularly important.

]) given as a talk at UC Berkeley, September 1998
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Saturation conjecture. Let (A,/i, v) e Z3n and N > 0. 77zen

(À, fly v) G if and only if (N\,NfjL,Nv) G Tn.

In other words Tn is saturated in Z3n. Note that the implication "only if'
is a trivial consequence of the fact that Tn is a semi-group or of the original
Littlewood-Richardson rule.

In July 1998, Knutson and Tao gave a proof of this conjecture, using
two wonderful new constructions of polytopes, whose lattice points count
Littlewood-Richardson coefficients. These constructions are called the hive and

honeycomb models. Earlier Berenstein and Zelevinsky had defined equivalent
polytopes, but with more complicated descriptions. In the first preprint of
Knutson and Tao's paper, both hives and honeycombs were used. However,
in their later version [10], hives were eliminated from the proof.

The goal of this exposition is to present a simple and complete proof using

only the hive model. It is based on Knutson and Tao's first preprint, and most
constructions used here come directly from this preprint. One innovation, in
Section 3, is the construction of a graph from a hive, which is used to simplify
their argument. In an appendix by Fulton it is shown that the hive model is

equivalent to the original Littlewood-Richardson rule. We thank W. Fulton,
S. Hosten, F. Sottile, and B. Sturmfels for useful discussions, and Knutson
and Tao for keeping us informed about their progress. We are also grateful to
the referee for many useful suggestions.

1. The hive model

We start with a triangular array of hive vertices, n -f 1 on each side :

This array is called the (big) hive triangle. When lines are drawn through
the hive vertices as shown, the hive triangle is split up into n2 small triangles.

By a rhombus we mean the union of two small triangles next to each other.
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Let H be the set of hive vertices and RH the labelings of these by real

numbers. Each rhombus gives rise to an inequality on RH saying that the

sum of the labels at the obtuse vertices must be greater than or equal to the

sum of the labels at the acute vertices :

A hive is a labeling that satisfies all rhombus inequalities. A hive is integral
if all its labels are integers. We let C C RH denote the convex polyhedral
cone consisting of all hives.

Denote by | A | the weight of the partition A, which is the sum of
its entries. The following theorem gives the relation between Littlewood-
Richardson coefficients and hives.

THEOREM 1. Let A, p, and v he partitions with \v\ — |A| + \p\. Then

is the number of integral hives with border labels :

+

0

v\ + v2 # 0 AI + À2

• I A I

MH A| + |/i|

Knutson and Tao prove this by translating hives with integer labels into
tail-positive Berenstein-Zelevinsky patterns, which are known to count
[1], [12]. An alternative direct proof of Fulton can be found in the appendix.
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Example 1. To compute c\\121 we can take n — 3 and border labels

as in the picture.

0

Let x be the undetermined label of the middle hive vertex. Then the

rhombus inequalities say that 4 < x < 5. It follows that there are two integral
hives with this border, so c\\l2i =2.

Let B be the set of border vertices, and p: RH —» R5 the restriction map.
The restriction of a hive to the border vertices by p is called its border. For
b R5, the fiber p~l(b) H C is easily seen to be a compact polytope, which

we will call the hive polytope over b. If b comes from a triple of partitions
as in Theorem 1, this is also called the hive polytope over the triple. We will
call the vertices of a hive polytope its corners.

We can now describe the strategy of Knutson and Tao's proof. If
(NX, Np, Nv) is in Tn, then the hive polytope over this triple contains an

integral hive. By scaling this polytope down by a factor N, it follows that the

hive polytope over (\,p,v) is not empty. Therefore it is enough to show that

if b G T? and p~l(b)DC 0 then p~l(b)DC contains an integral hive.

Let a; be a functional on RH~B which maps a hive to a linear combination

of the labels at non-border vertices, with generic positive coefficients. Then

for each b e p(C), this uj takes its maximum at a unique hive in p~l(b)r\C.
The strategy is to prove that this hive is integral if b is integral.

Example 2. Even though all rhombus inequalities are integrally defined,

a hive polytope over an integral border can still have non-integral corners.
The following hive is an example, and therefore it does not maximize any

generic positive functional u.
In the picture we have omitted the lines across rhombi where the rhombus

inequality is satisfied with equality, which makes it easy to see that this hive

is a corner of its hive polytope. In fact, it is not hard to show that for n < 4

and be 1?, all corners of p~l(b) D C are integral hives.
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0/\2 2

/ \
3 3 3/\ /\3 4 4 3/\/ \/\2—3.5 3.5 3.5—2

/ \ / \ / \ / \0 2 3 3 2 0

2. Flatspaces

We can consider a hive as a graph over the hive triangle. At each hive

vertex we use the label as the height. We then extend these heights to a graph

over the entire hive triangle by using linear interpolation over each small

triangle. A rhombus inequality now says that the graph over the rhombus

cannot bend up across the middle line.

In this way the graph becomes the surface of a convex mountain. The graph is

flat (but not necessarily horizontal) over a rhombus if and only if the rhombus

inequality is satisfied with equality.

We define a flatspace to be a maximal connected union of small triangles
such that any contained rhombus is satisfied with equality. The flatspaces split
the hive triangle up in disjoint regions over which the mountain is flat. The

flatspaces of the hive in Example 2 consist of two hexagons and 13 small

triangles.

Flatspaces have a number of nice properties. We will list the ones we
need below. Since all of these are straightforward to prove directly from the

definitions, we will simply give intuitive reasons for them.
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1. Fiatspaces are convex. This is clear since they lie under intersections
of a convex mountain with a (convex) plane.

2. All flatspaces have one of the following five shapes (up to rotations
and different side lengths) :

These are the only convex shapes that can be constructed from small triangles.

3. A side of a flatspace is either on the border of the big hive triangle, or
it is also a side of a neighbor flatspace. In other words, a side of one flatspace
can't be shared between several neighbor flatspaces. This again follows from
the convexity of the mountain described above.

Given a labeling b G RB, let x, y, z be labels of consecutive border vertices

on the same side of the big hive triangle (in any direction).

If b is the border of a hive, then the rhombus inequalities imply that

y—x > z—y, although more inequalities are needed to guarantee that b £ p(C).
We will say that b is regular if we always have y — x > z ~ y, when x, y, z

are chosen in this way. When a border comes from a triple of partitions, it is

regular exactly when each partition is strictly decreasing.

4. If the border of a hive is regular then no flatspace has a side of length

>2 on the border of the big hive triangle. In fact, if the labels x,y,z above

are on a flatspace side, then y — x z — y.
Given a hive, a non-empty subset S C H — B is called increasable if the

same small positive amount can be added to the labels of all hive vertices in
S, such that the labeling is still a hive.
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5. The interior vertices of a hexagon-shaped flatspace form an increasable

subset. Proving this is a matter of checking that each rhombus inequality still

holds after adding a small enough amount to the labels of these vertices. Only

rhombi that are already flat need to be considered, since for all others there

is some "slack to cut".

Note that the corresponding statements for flatspaces of other shapes are

false. The reason is that all other shapes have at least one sharp corner (with

a 60° angle). Lifting the interior vertex closest to a sharp corner is prohibited

by the inequality of the rhombus in that corner.

Note also that the sharp corners of a flatspace of any shape are endpoints of
its longest sides.

PROPOSITION 1. If a hive with regular border has no increasable subsets,

then its flatspaces consist of small triangles and small rhombi.

Proof. Otherwise some flatspace has a side of length > 2. This follows
because the only types of flatspaces that have all sides of length one are

small triangles, rhombi, and small hexagons, and the later do not occur by

property 5.

Let m be the maximal length among all sides of flatspaces. We will
proceed by constructing a region consisting of flatspaces with a side of length

m, such that the interior hive vertices of the region is an increasable subset.

The crucial point is to avoid sharp corners pointing out from the region, since

otherwise we would get the same problems as with the pentagon above. We
need m > 2 to be sure that interior vertices exist.

Start by taking any flatspace having a side of length m, and mark this
side. In the pictures this is shown by making the side thick. Then choose (and
fix) a line crossing (the extension of) the marked side in an angle of 60° and
call it the moving direction. If the flatspace is a triangle or a parallelogram,
we furthermore mark an additional side. For a triangle, this is the other side
not parallel to the moving direction, while for a parallelogram we mark the
side opposite the one already marked.

We construct a region, starting with the chosen flatspace. This region will
initially have one or two marked sides, depending on the shape of the chosen
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< >
moving direction

flatspace. As long as the region has a marked side on its outer border, the

flatspace on the opposite side is added to the region. Note that this flatspace is
well defined by property 3, since regularity prevents any marked edges from
being on the border of the big hive triangle. If the new flatspace is a triangle,
we mark its unmarked side which is not parallel to the moving direction.

If the new flatspace is a parallelogram, we mark the side opposite the old
marked side. If it is not a triangle or parallelogram, we don't mark any new
sides.

Since the region always grows along the moving direction, it will never

go in loops. Now since no marked edges can ever reach the border of the

big hive triangle, the described process will stop. Notice that by construction

of the region, each included flatspace has enough of its longest sides marked,
that all sharp corners are endpoints of marked sides. Since the final region
has no marked sides on its outer border, this means that it can't have any
sharp corners pointing out.

We claim that the inner vertices of the final region form an increasable

subset. If not, some small rhombus satisfied with equality in the region has

more obtuse than acute vertices on the region border. If any flat rhombus has

both of its obtuse vertices on the border, then it follows, using convexity of
the flatspace containing the rhombus, that one of the acute vertices is a sharp

corner of the region. On the other hand, if a flat rhombus has one obtuse

vertex and no acute vertices on the border, one can deduce, using property 3,
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that two marked sides must meet in a 120° angle at the obtuse vertex on the

border. However, the construction never introduces marked sides that meet in

this angle.

We have established that the presence of any flatspace which is not a small

triangle or rhombus gives rise to an increasable subset. This completes the

proof.

Let h be a hive, all of whose flatspaces are small triangles or small rhombi.
We construct a graph G from h as follows. G has one fat black vertex in the

middle of each small triangle flatspace. In addition there is one circle vertex

on every flatspace side. Each fat vertex is connected to the three vertices on
the sides of its triangle, and the two circle vertices on opposite sides of a flat
rhombus are connected. This graph is topologically equivalent to the reduced

honeycomb tinkertoy of Knutson and Tao.

LEMMA 1. If h is a corner of its hive polytope p 1(p(h)) Pi C, then G

Proof Suppose G has a non-trivial loop, and give this loop an orientation.
Each hive vertex then has a well defined winding number, which is the number
of times the loop goes around this vertex, counted positive in the counter
clockwise direction. Note that the winding number is zero for each border
vertex, and that some winding numbers are non-zero if the loop is not trivial.

For each r G R, let hr G be the labeling which maps each hive vertex
to the label of h at the vertex plus r times the winding number of the vertex.
We will show that hr is a hive for r G (-e,e), for a suitable e > 0. This

3. Small Flatspaces

is acyclic.
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implies that h is an interior point of a line segment contained in its hive

polytope, which contradicts the assumption that h is a corner.

Choose any e > 0 such that each rhombus inequality that is strict for h

is also satisfied for hr when \r\ < e. We claim that this e will do. Consider

any rhombus satisfied by h with equality :

q

Suppose that the loop goes p times through the horizontal edge in the
indicated direction and q times down through the other edge. Let the vertex
with label x have winding number t. Then going clockwise around the

rhombus, the winding numbers of the three other vertices are t+p, t+p + q,
and t + q. It follows that the labels of hr are

y'= y + r(t+p)9 z' =z + r(t + p + q),
x' x + rt, wf w + r(t + q)

Since the rhombus is fiat for h, we have x + z y + w. But this implies that
xr T- z! —yfjrwr, and so the rhombus is also flat for hr.

PROPOSITION 2. Let h be a hive which is a corner of its hive polytope
p~1(p(h))nC. Suppose the flatspaces of h consist only of small triangles and
small rhombi. Then the labels of h are integer linear combinations of the

border labels.

Proof By Lemma 1, the graph G for h is acyclic. Label each circle
vertex with the difference of the labels of the hive vertices on its side as

shown below. A circle vertex on a horizontal side is always assigned the label

of the left hive vertex minus the label of the right hive vertex on its side, etc.
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By construction, the sum of the labels of three circle vertices surrounding

any fat vertex is zero. Furthermore, if two circle vertices are connected by

a single edge, then their labels are equal. This follows because the rhombus

that separates them is satisfied with equality. We claim that all circle vertex

labels are Z-linear combinations of the border labels. Since this implies that

also all labels of hive vertices are such linear combinations, this will finish

the proof.

If the claim is false, let S be the non-empty set of circle vertices whose

labels are not Z-linear combinations of border labels, together with all fat

vertices connected directly to one of these circle vertices. Since G is acyclic,
some vertex u £ S is connected to at most one other vertex in S.

Suppose u is a circle vertex. Then u can't be on the border of the big hive

triangle, since its label would then be the difference of two border vertices,
and so a Z-linear combination of these. Therefore u is not an endpoint of
G, so it is connected to a vertex v outside S. Since S contains all fat
vertices connected to u by construction, v must be a circle vertex whose
label is a Z-linear combination of border labels. But u has the same label,
a contradiction.

Therefore u must be a fat label, and exactly one of its three surrounding
circle vertices is in S. This means that the labels of the other two circle
neighbors are Z-linear combinations of border labels. But since the sum of
the labels of all three circle vertices surrounding u is zero, all three labels
must be Z-linear combinations of the border labels. This contradiction shows
that S is empty, which concludes the proof.

4. Proof of the saturation conjecture

We will call a functional on RH~B generic if it takes its maximum at a

unique point in p~l(b) n C for each b G p(C). It follows from the existence
of secondary fans in linear programming [11, §1] that the generic functionals
form a dense open subset of ÇRH~B)*. We can now complete the proof of
the saturation conjecture.

Theorem 2. Let(A, p,v) G Z3" anN >0. Then (A, p, G Tn if and
only if (NX,Np,Nu) G Tn.

Proof. As already noted, it is enough to show that if b G p(C) D ZB then
the fiber p~l(b)nC contains an integral hive.
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Fix a generic functional to on RH~B which maps a hive to a linear
combination with positive coefficients of the labels at non-border hive vertices.
For each b G p(C), let 1(b) be the unique hive in p~l(b) D C where u is

maximal. Then £: p(C) —> C is a continuous piece-wise linear map [11, §1].
Notice that since w has positive coefficients, 1(b) has no increasable subsets.

We want to prove that the labels of £(b) are Z-linear combinations of the
labels of b. In particular £(b) is an integral hive if b is integral. For a regular
border b G p(Q, Proposition 1 implies that the flatspaces of £(b) consist of
small triangles and rhombi; by Proposition 2 this implies that all labels of
£(b) are Z-linear combinations of the labels of b. Finally, since the regular
borders are dense in each maximal subcone of p(C) where £ is linear, £ must
be integrally defined everywhere.

5. Remarks and questions

Knutson and Tao's proof of the saturation conjecture implies that Klya-
chko's inequalities for Tn can be produced by a simple recursive algorithm,
which uses the inequalities for 7*, 1 < k < n— 1 ([9], [10], [12], [6]). A triple
of partitions (À,/x, z/) with M | A| + \p\ is in Tn if and only if

k k k

^7,-+*+i-i < yy aai+k+i-i+yy
i= 1 i= 1 i= 1

for all triples (a,ß,j) G Tk with 71 <rt — k. Another important consequence
is Horn's conjecture, which says that the same inequalities describe which
sets of eigenvalues can arise from two Hermitian matrices and their sum [8].

P. Belkale has shown that the inequality produced by a triple (a, /?, 7) with
Littlewood-Richardson coefficient > 2 follows from the other inequalities.
Knutson, Tao, and Woodward have announced a proof that the remaining
inequalities are independent, i.e. they describe the facets of the cone p(C).
Their proof uses an interesting operation of overlaying two hives, which is

defined in terms of Knutson and Tao's honeycomb model [10].
These results have made it very interesting to determine which triples

(A,/x, v) have coefficient equal to one. Fulton has conjectured that this

is equivalent to c^vx being one for any N G N. This has been verified in

all cases with N\v\ < 68. (Recently Knutson and Tao have reported that they

can prove this as well.)
For n — 3 it is easy to show that a triple of partitions has Littlewood-

Richardson coefficient one if and only if it corresponds to a point on the
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boundary of the cone p(Q. In general, Fulton's conjecture implies that the

triples with coefficient one are exactly those corresponding to points in a

collection of faces of p(Q. For n > 3 this means that all triples corresponding

to interior points in p(C) have coefficient at least two.

One approach for proving Fulton's conjecture is to show that if b E p(C)nZB,
then any generic positive functional co on RH~B must be minimized (as well

as maximized) at an integral hive in p~l{b) fi C. In fact, by Proposition 2 it
is enough to prove:

If b G p(C) is a generic border and if a generic positive functional to

is minimized at h G p~l(b) H C, then the flatspaces of h consist of small

triangles and rhombi.

Part of proving this is to specify when a border b is generic. We believe

the statement is true if b avoids finitely many hyperplanes in RB.

The Littlewood-Richardson coefficients c\ß have the following natural

generalization. Given decreasing sequences of integers h, and A(l),..., A(r),
let c£(1) A(r) denote the multiplicity of Vv in the holomorphic representation
Va(1) 0 • * * 0 V\(r) • When v — (0,..., 0), this specializes to the symmetric
Littlewood-Richardson coefficient ca(1),...,A(0 which is the dimension of the

GLn(C)-invariant subspace of Va(1) 0 • • • 0 V\(r)- Postnikov and Zelevinsky
have pointed out that the saturation conjecture as stated in the introduction
implies a similar result for these generalized coefficients, i.e.

(5-1) CA(1), ..,A(r) 7^ 0 cN\(l),...,N\(r) 7^ Q

Knutson has shown us that, by combining several hive triangles, one obtains
a polytope whose integral points count these more general coefficients. This
gives rise to another proof of (5.1).

In [3] other generalized Littlewood-Richardson coefficients related to quiver
varieties are described. A different generalization related to Hecke algebras is
defined in [7], and quantum Littlewood-Richardson coefficients are studied in
[2]. It would be very interesting if these coefficients can be realized as the
number of integral points in some polytopes.
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Appendix. A bijection between hives and
Littlewood-Richardson skew tableaux

(by William FULTON)

The aim of this appendix is to give a simple and direct bijection between
the hives with given boundary (given by a triple of partitions), and the set

of Littlewood-Richardson skew tableaux for the given triple. In principle one
could construct such a mapping from [4], but it is simpler to do it directly
from hives; in the description we give here, it is easy to see that the map is

a bijection, without knowing that the two sets have the same cardinality. As
in [4], we produce contratableaux, but there is a standard bijection between
these and the original Littlewood-Richardson skew tableaux.

Consider an integral hive, with sides having n + 1 entries, corresponding
to partitions À, //, and v, with \v\ =a |A| -f |/x|. The differences down the

northwest to southeast border give the partition À, the differences across the

bottom border from right to left give /i, and the differences down the northeast

to southwest border give v (see Theorem 1). The main idea for constructing
a skew tableau with a reverse-lattice word is to use the other northwest to
southeast rows of entries to construct a chain of subpartitions of À.

The entries of the hive will be denoted alk, with 1 < i < n + 1 and

0 < k < n + \ — i. Here the superscript denotes the northwest to southeast

row of the entry, with the first row being the long row on the boundary, and

the others in order below that; the subscripts number the entries along the

rows, from northwest to southeast.

a0

ao °\

% 2 1

% al a2

a0ala2 a\

Note that 0, and that Àk a\ — a\_x for 1 < k < n.

For 1 ^ i ^ define a sequence
^

' * *
i i |) setting

A^° a[ — aik_1. Note that A(1) — A.
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There are three types of rhombus inequalities, depending on the orientation

of the rhombus. We first consider two of them :

This says that A^+1) > \f+l.

ak-1

This says that Xf > A£+1).

Together, (1) and (2) say that Xf>A^+1) > In particular, each

sequence A® is weakly decreasing, and we have a nested sequence of

partitions : A(1) D A(2) D • • • I) A(n) 0 A^+1) 0.

For example, the hive

0

10 6

17 14 10

24 21 18 14

28 26 23 19 15

gives the chain of partitions (6,4,4,1) 0 (4,4,1) 0 (4,2) 0 (2) 0 0.
We identify partitions with Young diagrams, but rotated by 180 degrees,

so the diagram for a partition A has A^ boxes in the k01 row from the bottom,
and the rows are lined up on the right. Fill the boxes by putting the integer
i in each box of A^ — A(r+1). The conditions (1) and (2) say exactly that
the result T is a skew tableau on this shape, that is, it is weakly increasing
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across rows and strictly increasing down columns. Such a T is often called
a contratableau of shape A. In our example, T is

1

1 1 1 2
2 2 3 3

1 1 3 3 4 4

The word w(T) is obtained by reading from left to right in rows, from
bottom to top. In the example, w(T) 113344223311121.

Let t/(/i) be the tableau of shape fi whose Ith row has \±i entries, all
equal to i. The word w(U(/S)) is similarly read from left to right, bottom to

top. In our example, fi (4,4,3,2), and w{U{yi)) 443332222 1 1 1 1.

Now we consider the last rhombus inequalities :

(3) ak_^—yak

These say that — alk_x < alk — alj~l. We claim that this is equivalent to
the condition that w(T) w(U{fi)) is a reverse lattice word [5, §5.2].

This asserts that, if we divide this word at any point, the number of times

that i occurs to the right of this point does not exceed the number of times

that i — 1 occurs to the right of this point. We only need to check this at a

division corresponding to the place in the k01 row from the bottom of T that

divides elements strictly smaller than i from elements greater than or equal

to i. The number of times that i occurs here is

+ (^lfc+1 ~ ^+l1}) ^ (^«+1-/ - °) + Vi

(Af +<! + •• + A® - (A<i+1> + + • •. + A<*;>) +
(4+w - 4-1) - (4t1, - 4t\) + (4t1 - 4+1-,)
4t\ - 4-i

Similarly, the number of times that i — 1 occurs is

Q^k+X ~ ^+l) + ~ 4+2) (^n+2-i ~ °) + Vi-1 4 - ak
1

*

Note that the number of times i occurs in all of T is aq+1 — al0 — \it — vi —

This process is reversible. Given any contratableau T of shape À such

that w(T) • w(U(fd)) is a reverse lattice word, T determines the chain
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A(1) D A(2) D - D A(n) D 0, and from these partitions one successively

fills in the entries in the northwest to southeast diagonal rows of the hive;
the rhombus inequalities (1) — (3) are automatically satisfied.

To make the story complete, we recall why such contratableaux correspond

to Littlewood-Richardson skew tableaux, using standard results about tableaux,

as in [5]. However, it may be pointed out that these contratableaux are at

least as easy to produce and enumerate as the more classical skew tableaux.

First, the condition that w(T) • w(U{p)) is a reverse lattice word, given that

the number of times i occurs in T is — /a*, is equivalent to asserting that

w(T) w(U(n)) is Knuth equivalent to w{U(v)) [5, §5.2]. The rectification
R of a contratableau T of shape A is easily seen to be a tableau of shape

A, and with the same property that w(R) • w(U(fj,)) is Knuth equivalent to

w(U{y)). The correspondence between tableaux and contratableaux of shape
A is a bijection, by reversing the rectification process.

Now the condition that w(R) • w(U(/j9) be Knuth equivalent to w(U(v))
is equivalent to the condition that R • U{fi) — U{v) in the plactic monoid of
tableaux [5, §2.1]. It is easy to see, from the definition of multiplying tableaux

by column bumping entries of the first tableau into the second [5, §A.2], that

if R and S are tableaux with R- S U{ß), then S must be equal to U(a) for
some partition a. This gives a correspondence between the set of tableaux R

that we are looking at and the set of pairs (R,S) with R of shape A, S of
shape (i, whose product is the tableau U(y). There is a standard construction
[5, §5.1] between these pairs and the set of skew tableau on the shape vj\
of content (jl whose word is a reverse-lattice word.
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