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PROPOSITION 6.8. Let A be a commutative semilocal ring in which 2 is
invertible. Let (P, ) be a quadratic space over A. If (P, o) is isometric to
(P,t- ) over Alt, t~ 1], then (P, ) is hyperbolic.

Proof. Let ¢ be the class of (P, ) in W(A). In W'(A[£]) we have £ = t-£.
Applying Res to both sides we obtain £ = 0. Since A is semilocal, by Witt’s
cancelletion theorem we conclude that (P,«) is hyperbolic. [

7. THE WITT GROUP OF LAURENT POLYNOMIALS
Let W/(A[t,t~']) be the group defined in the introduction.

THEOREM 7.1. Let A be an associative ring with involution in which 2
is invertible. Let

©: WAl t7']) — WAL ']
be the canonical homomorphism.
(a) If H*(Z/2,K_1(A)) = 0, then ¢ is surjective.
(b) If Ko(A) = Ko(Alt]) = Ko(Alt, t~1), then ¢ is an isomorphism.

Proof of (a). Corollary 2.4 implies that
H*(Z/2, Ko(Alt,17'])/Ko(A)) = 0.

This means that every projective A[t,z~!]-module P is in the same class as
some projective module of the form

Polt,t "1 Q@ 0,

where Py is a projective A-module. Therefore, adding to a space (P,a) a
hyperbolic space H(Q') with Q ® Q' free, we may assume that P is of the

form Py[t,t~']. This means precisely that the class of (P, ) is in the image
of W(Als,r™'). O

Proof of (b). Surjectivity is obvious, because by assumption every
projective A[t,t!]-module is stably extended from A. Suppose that the class
of a space (Po[t,#~ '], @) vanishes in W(A[¢t,z7!]). This means that, for some
Q and R, there exists an isometry

(Polt,t '], ) L H(Q) ~ H(R).

Adding to both sides a suitable H(A[f,r~']") we may replace Q and R by

extended modules Qot,#7'] and Ro[z,#']. Then the isometry means precisely
that the class of (Pgy[t,#7'], ) vanishes in W/(A[r,t~']). [
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We can restate assertion (b) of Theorem 7.1 as follows.

THEOREM 7.2. Let A be an associative ring with involution, in which 2
is invertible. Assume that Ko(A) = Ko(A[f]) = Ko(Alt,t~']). Then there exists
a natural homomorphism Res such that the sequence

0 — W(A) — WAL 1) 2% wa) — 0

is split exact. The homomorphism Res restricts to an isomorphism of t- W(A)
onto W(A).

8. TWO COUNTEREXAMPLES

In this section we show that the map W/(A[t,t~']) — W(A[t,t~']), in
general, is neither surjective nor injective.

EXAMPLE 8.1. We first recall the Mayer-Vietoris sequence associated to
a cartesian square of commutative rings (see [1], Ch. IX, Corollary 5.12). Let

R —— §

7| E

R — §
be a cartesian diagram of commutative rings, with f or g surjective. Denote

by Ko the kernel of the rank function on Ky. Then there is a commutative
diagram with exact rows

K(R) x Ki(S) — Ki(§) — Ko(R) — Ko(R) x Ko(S) — Ko(S)

ldet ldet l/\ max l/\ i \ l/\ max
G(R) X G(S) — G,,(S) — Pic(R) — Pic(R) x Pic(S) — Pic(S)

Let A be the local ring at the origin of the complex plane curve
Y2 = X2 — X3, A the normalisation of A and ¢ the conductor of A in
A. Applying the big diagram above to the cartesian squares

o~

A —— A Alt, ] —— A1,

l oo ] l

A/) —— (A/c) A/l ] —— @A/, ]
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