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374 M. OJANGUREN AND I. PANIN

6. The residue

In this section we construct a residue map

Res: W'{A[t,rx])W(A)
satisfying Pi and R2 of §5.

The definition of Res will be preceded by a few preliminaries.

LEMMA 6.1. Let Po be a (finitely generated) projective A-module and

define M(a) by the exact sequence

0 — P0[t] A P*[t] —+ M(a) 0,

where a is A[t\-linear. Suppose that its localization at: Po[t,t~l] PotM-1]
is an isomorphism. Then, as an A-module, M(a) is finitely generated and

projective.

Proof. Decompose PotM-1] as a direct sum PqW © J-1 Pol/-1] of
A-modules. Let ir be the projection onto the first summand. Then ß
TT o is an A-linear splitting of a. Hence M(a) is A-projective. It
is also finitely generated as an A[t] -module, hence, being annihilated by a

power of t, it is finitely generated as an A-module.

Let M m M (pi) be as in the previous lemma. Assume that a is

e-symmetric. We define a pairing

M xM -+A[tyrl]/A[t]

by (ci,b) — a(afl(b)), where a and b are representatives in PJM
afb eM.

LEMMA 6.2. If a is e-hermitian, then is a perfect e-hermitian pairing.

Proof. Since at is e -hermitian, denoting by the involution on A

we have

(ä, b) a(afl(b)) e(b(afil(a)j)° e(b,~ä)°

This proves the first assertion.

We now check that the adjoint of

x: M~*RovnA[t](M,A[t,rl]/AM),

defined as x(ß)(Z?) (ä,b), is an isomorphism. We first prove injectivity.
Suppose that, for some a and every x in M, x(ä)(x) 0. This means
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that ci(at !(x)) G A[t] for every x G Pq[î]. We only have to show that

cÇl{a) G Po M- Consider the diagram

P0[f] —> Hom^ffjCPg [?L A[?])

1 1

Pot?:.? '] —^ Hom^[r](Po[?],A[f,t '])

where the horizontal arrows are the canonical ones. Since Po[t] is projective

(and finitely generated over A[t], they both are isomorphisms. Therefore an

element b G Po[t*t~l] is in Po[t] if and only if, for any x G PqD], x$)
is in A[t]. This is indeed the case for b of1 (a) because x(a^l(a))
e(fl(ar_1(x)))° G A[t] by the very assumption on a. Thus injectivity is proved.
We now check that y is surjective. Let /: M —> A[t, t~l]/A[t] be an A[t] -linear

map. Since PoM* is projective, there exits an / which makes the right hand

square of the diagram

0 Pot?] —Pot?]* —^ M > 0

0 > A[f] » A[t.rl] — » 0

commute, p and q being the canonical surjections. Clearly qofoa 0, hence

there exists an A[r]-linear map a: PoO] — A[t] such f o a — i o a, i being
the inclusion A[t] A[t.t~1]. We claim that x(a) ~ f F°r this it suffices
to show that for any b G PoW* we have a{a^x(b)) =f(b) modulo A[t]. We
denote by at the localization of a at t and by ft \ P0[/\f-1]* —>• A[U f_1] the

unique A[t, t~l] -linear extension of /. Observing that oql(a) at o a"1 we
get the following relations :

a(a~lm(a, o a"1)^) =ft(b)

This proves that x is surjective.

Let now (P0p*f_1].a) be an e-hermitian space. For any natural integer n
for which t2,1a(P0[t]) Ç P0[t]* we define M{a,ri) by the exact sequence

0 —• Polt] ^ Polt] —+ M(a. 77) — 0

and equip it with the e-hermitian structure defined above:

1 a

(a,b) a((t2"a,)
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Lemma 6.3. Let iß: iPç>[t,t~l],a) —» (ßo[M-1L/3) be an isometry and

assume that ißiPolt]) G Qo[t], a(P0[t]) Ç P0W* and ß(ßoM) £ ßoM*- 77^
Af(a) Af(/3) are Witt equivalent t-torsion spaces.

Proof. Consider the diagram

0

î
0 K

1 4
0 P0[t] —^ P0[t]* M(a) 0

f r]
0 * ßoM Q0[t]*-¥->» 0

1- I
L 0

i
0

By Lemma 6.1 the module L, viewed as an A-module, is finitely generated
and projective. The map iß* is obtained from the map iß by dualizing over

A[t]. We denote the cokernel of iß* by K and we denote the canonical map
Polt]* — K by q. One may observe that K is isomorphic to Ü* (see §4 for
the notation) but we will not use this observation.

The A [t] -linear map 6 qa ° iß* : ßoM* -> M(a) induces a map
9: M(ß) —> 9(Qo[t]*)/0(ß(Qo[t])). The statement will be deduced from the

following claims.

(1) The map 6 is an A [t] -linear isomorphism.

(2) The map q induces an A [t] -linear isomorphism

p:M(a)/0(Qo[tr)^

(3) 9(ß(Qo[t])) is a sublagrangian of M(a).

(4) {d{ß{QM)V =e{QM*)-
(5) The map 0 is an isometry of t-torsion spaces.

In fact, by (4), (5) and Theorem 4.5, Miß) is Witt equivalent to Mia).
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We now prove the claims. The surjectivity of 0 is clear. To show injectivity,

suppose that x G ker(0). Choose a lift x G goM* of x. There exist a y G go (7]

and a zG Po[t] such that ip*(ß(y)—X) a(z). Replacing a by tp* oßofs we

get ip*(x) ip*(ß(y — ip(z))). Since ip* is injective, this shows that x G lm(ß)
and hence x 0.

To prove (2) observe that, since qoa qoip*oßoip 0, q induces a

surjective map p: M(a) /0(goM*) —» K- Injectivity is also clear.

To prove (3) we first observe that 9(ß(Qo[t])) is a direct factor (as an

A-module) of M(a). In fact, by (2), 0(ßoM*) is a direct factor (as an

A-module) of M(a) and, by (1), 9(ß(Qo[t])) is a direct factor of ö(ßoW*)-
For any two elements a,b G Po M* let us denote by {a,b)a the element
a(aß1 (b)), and similarly for (a,b)ß. We then have

(,a,b)ß «= {i>*{a\ip*(b))a

because ßt is an isometry. Let now äßb G ö(/?(ß0[r])) and x, y G go M such
that a ip*(ß(x)) and Z? - ip*(ß(y)) are preimages of a and b. We have to
check that (a,Z?) 0. This is the same as saying that {a,b)a is in A[t\.
This is indeed the case because

A b)a ß*(ß(y)))aß(y))ß G A[/].

We now prove (4). For any aG 9(ß(Q0[t])) and any b G M(a) we choose
preimages aand b of the form a ip*andb with x G Q0[t]
and y G Qo[f,f-']*. Then we have

a,b)a {i>*(ß(x)),ip*(y))ay(x)°

which shows that, for any y G ßotFt"1]*, <^*C0(ÔoW)), b)a is in if
and only if y G ß0[f]*, which is equivalent to G 0(ßo[t]*).

We now prove (5). We already know that 6 is an -linear isomorphism.
A computation like the one above proves that it is an isometry.

COROLLARY 6.4. Let (Poit,bean space. Let n be
such that t2"a(Fo[t]) Ç P0W*- Then the class does
not depend on the choice of n.

COROLLARY 6.5. Let (Po[t,t 1],q) and (PoLt, f~{], ß) be isometric spaces
and assume that for some natural integers m and r2'"Q(P0[t]) C P0W* and
t2"ß(P0[t]) C P0[t]*. Then M(a,m) and M(ß,n) are Witt equivalent
spaces.
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Proof. Let 0: (Pol>, t~l], t2ma) —» (Po[tf~l]f2nß) be an isometry
and let i be a natural integer such that tkf>(Po[t]) Ç PoM*. Then

tkf : (PolL f-1], f2ma) —> (P0L, r*1], t2n+2kß) is an isometry and, by Lemma
6.3, M(a,m) and M(/?,n + fc) are Witt equivalent. Hence, by Corollary 6.4,

M(a,m) and M(ß,ri) are Witt equivalent as well.

PROPOSITION 6.6. Associating to any space (PoL, I-1], a) torsion

space M(a,n) (for a suitable n) yields a homomorphism

res: W'(A[t,t~'])- Wtors{A

Proof By Corollary 6.5, associating to the isometry class of a space
(PoO, rl],a) the Witt class of the t-torsion space M(a,n) for some suitable

n is a well defined map. It is obvious that the orthogonal sum of two spaces is

mapped to the corresponding sum of t-torsion spaces, hence this map induces

a homomorphism to: Kh —* Wt0rs(A[t]), where KH is the Grothendieck group
of e-hermitian spaces of the form (PolL t~l], a). It is clear from the definition
of M(a,ri) that a standard hyperbolic space H(Qo[t, t~1]) is mapped to zero,
hence uj induces a homomorphism res: W'(A[t,t~1]) —> Wtors(A\f\)' D

If we compose res with dw : Wtors(A[t]) W(A) we get a homomorphism

Res dw o res: W'(A[t, t~1]) W(A)

which we call residue.

Theorem 6.7. The residue

Res: WfA[t,r1]) W(A)

satisfies the following two properties :

R\ : For any constant space £ G W(A) C W(A[7, t~1]), Res(fi) 0.

P2 • For any constant space £ G W(A), P<?s(7 •£) £.

Proof. The two properties immediately follow from the construction of
res.

An amusing application of the existence of Res is the following result.
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Proposition 6.8. Let A be a commutative semilocal ring in which 2 is

invertible. Let (P, a) be a quadratic space over A. If (P, a) is isometric to

(P, t • a) over A[t,rl], then (P, a) is hyperbolic.

Proof. Let £ be the class of (P, a) in W(A). In W(A[7]) we have £=*•£.
Applying Pes to both sides we obtain £ « 0 Since A is semilocal, by Witt's

cancelation theorem we conclude that (P, a) is hyperbolic.

7. The Witt group of Laurent polynomials

Let W'(A[t,t~1]) be the group defined in the introduction.

THEOREM 7.1. Let A be an associative ring with involution in which 2

is invertible. Let

be the canonical homomorphism.

(a) If #2(Z/2,P_i(A)) 0, then cp is surjective.

(b) If K0(A) K0(A[t]) Ko(A[t, t~1]), then p is an isomorphism.

Proof of (a). Corollary 2.4 implies that

H2(Z/2,K0(A[t,rl])/K0(A))0.

This means that every projective A[t,t_1]-module P is in the same class as

some projective module of the form

Potf.r1] &Q®qt,
where Po is a projective A-module. Therefore, adding to a space (P, a) a

hyperbolic space H(Qf) with Q® Q' free, we may assume that P is of the

form P0[t, t~1]. This means precisely that the class of (P, a) is in the image
of w'(A[t, r1]),

Proof of (b). Surjectivity is obvious, because by assumption every
projective A|Y, t~{]-module is stably extended from A. Suppose that the class

of a space (P0[M_11,a) vanishes in W(A[t,t~1]). This means that, for some
Q and P, there exists an isometry

Adding to both sides a suitable H(A[t, t~l]n) we may replace Q and P by
extended modules Q0[t, t~l] and P0[t, t~l]. Then the isometry means precisely
that the class of (PoO, t~l], a) vanishes in W'(A[t,t~1]).
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