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PROPOSITION 4.7. The isomorphisms
Oy Homgp (M, Alt,t11/Alt]) — Homa (M, A)
induce a surjective homomorphism
0" Wiops(Al1]) — W(A).
Proof. Associating to any ¢-torsion space (M,y) the hermitian space
(M, Oy o ) preserves isometries and orthogonal sums and, by Lemma 4.3,

transforms metabolic #-torsion spaces into hyperbolic spaces (with the same
lagrangian). Therefore it induces a homomorphism

0" Wiors(Al1]) — W(A).

To find a preimage (M,p) of a space (M,a) over A consider M as an
A[t]-module annihilated by ¢ and replace a: M — M* by ¢ = 0;,' ocar. [

5. THE WITT GROUP OF EXTENDED SPACES
Let W/(A[t,t~']) be the group defined in the introduction.

THEOREM 5.1. Let A be an associative ring with involution, in which 2
is invertible. The homomorphism

1 W(A) & W(A) — WALz, 1'])
mapping (&,n) to & +tn is an isomorphism.
Proof. The injectivity of % is based on the following result, whose proof

will be given in §6.

PROPOSITION 5.2. There exists a homomorphism
Res: W (A[t,t71]) — W(A)

with the following properties :
Ry : For any constant space § € W(A) C W/(Alt,t7']), Res(¢) = 0.
Ry @ For any constant space £ € W(A) C W/(A[t,t7']), Res(r- &) = €.

Proof. See Theorem 6.7. [




372 M. OJANGUREN AND I. PANIN

Assuming this proposition, suppose that for two elements &, € W(A) we
have £ +¢-n=0. Then 0 = Res({ +t-n) =7 and hence £ = 0.

We now turn to the surjectivity of ). We have to show that every hermitian
space (P, ) over Aft,t~!] with P = Py[t,+~'] is Witt equivalent to a space of
the form (Qo[t, 7', ) L (Q1[t,#7'],ta1). Let P; be a projective A-module
such that Py & P; = A" for some n. Replacing (P, a) by

(Polt,t '], @) L (Polt, t'1, —a(1)) L H(Py[t,t7']),

we may assume that P is free. Replacing o by *"«a with a suitable N, we
may also assume that o maps Py[¢] into P;[t]. By Lemma 3.2 we are reduced
to the case where o = g +ta; for some e-hermitian maps ag, o : Py — Py .

LEMMA 5.3. If, for a constant matrix 3,
a =1+ (- 1)8 € GL,(A[t,t ') N M, (A[]),
then there exists an N such that (1 — B)V3Y = 0.

Proof. This is Corollary 2.4 of [2]. For the convenience of the reader we
reprove it here.

Writing the inverse of o as a Laurent polynomial and equating coefficients
in the identity

l=aa' =1 = B+1B)(y—gt 4 +y-—1t  + v+ mt+ -+t
we get

1=0B87—=0, Ad=Pv—gt1+P7-4=0, ...,
1 =PBy-1+Pv-2=0, A =P+ Ly-1=1
and
A= +Brvw=0 ..., A=+ Lrp-1=0, p7,=0.

From the first line we get (1 — 8)?y_; = 0, from the third $°*!yy =0 and
then from the middle one At1(1 - B =0. [

We put 8 = a(1)"lay: Py — Py, so that

o) la=14+@¢—-1g.

We will repeatedly use the fact that 3 is adjoint with respect to o, a(1), o, o1,
by which we mean that o8 = *«, and so on. The same clearly holds for
any polynomial in § with integral coefficients.
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By Lemma 5.3 we can find an integer N such that N1 - BN = 0.
Denoting by Z[3] the subring of Ends(Py) generated by S we can write
Z18] = Z[Ble x Z[B](1 — e), where e is an idempotent of the form [ + v
and v is a nilpotent matrix. Note that ¢ and v are polynomials in 3 and
therefore they commute with § and with each other. If we decompose Py as
ePy + (1 — )Py and represent A-linear endomorphisms of Py as 2 x 2 block

matrices, we have
(1 0 3= I1+v; O >
“=\o o)’ N 0 2

o= ( P a12>(1+(t—1)ﬁ).

and

ey, an
Computing the product we see that the condition a* = ea implies that
ap(l — ) = —vian, af; =eann  and @, = €.
From this we immediately deduce
ap(l — ) = (=)o

for any natural integer k. Since v; and 1, are nilpotent, this implies that
a2 = 0. Thus « is of the form

Oé11f(1—|—1/1)—05111/1 0
0 an(l + (t — Diy)
and (Po[t,17 '], ) splits as a hermitian space.

Since a, a1 and ay, are symmetric, evaluating the above matrix at t = 1
we see that

apvy =vion  and  apv = v ag.
The first block can be written as
oy =ant(l+vy —t 'v) = a1l 4+ (1 — ).
Since (1 — ¢ Y2 is nilpotent, the formal power series
R R e L R N (i [(¢ B

is a Laurent polynomial and we can replace the first block by T 01T = Qq1t.
Similarly, the power series

m=1+ - D) 2= (T~ D)

is a Laurent polynomial and we can replace the second block by 70 = .
This shows that

(Polt, 171, ) = (Poelt, 1", tay) L (Po(1 — &)1, 17", ),
thus proving the surjectivity of . [
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