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Proposition 4.7. The isomorphisms

dM- Horn A[t)(M,A[t,rl]/A[t])Horn

induce a surjective homomorphism

dw: Mf])-»W(A).

Proof. Associating to any t-torsion space (M,p) the hermitian space

(M, <9m o (p) preserves isometries and orthogonal sums and, by Lemma 4.3,

transforms metabolic t-torsion spaces into hyperbolic spaces (with the same

lagrangian). Therefore it induces a homomorphism

dw: Uv„rl(.4|/|) -,
To find a preimage (M,ip) of a space (M, a) over A consider M as an

A[t]-module annihilated by t and replace a: M —>• M* by ip d^1 o a.

5. The Witt group of extended spaces

Let Wf(A[t,t~1]) be the group defined in the introduction.

THEOREM 5.1. Let A he an associative ring with involution, in which 2
is invertible. The homomorphism

W(A) © W(A) -> W'(A[t> r1])

mapping (£,rj) to Ç + trj is an isomorphism.

Proof. The injectivity of ijj is based on the following result, whose proof
will be given in §6.

PROPOSITION 5.2. There exists a homomorphism

Res: W'(A[t,r1]) -> W(A)

with the following properties :

R\ : For any constant space £ G W(A) C W'(A[t, t~[]), Res(0 0.

R2 : For any constant space f G W(A) C W'(A[t, t~1]), Resit • 0 £.

Proof. See Theorem 6.7.
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Assuming this proposition, suppose that for two elements 77 G W(A) we
have ^ + ^77 0. Then 0 Res{^ + t - 77) 77 and hence £ — 0.

We now turn to the surjectivity of f We have to show that every hermitian

space (P, a) over A[t, t~l] with P P0[f, £_1] is Witt equivalent to a space of
the form (Qo[t,t~l],ao) _L (Q\[t,t~l],tai). Let Pi be a projective A-module
such that Po ® Pi An for some n. Replacing (P, a) by

(P0[t, r1], a) ± (P0[f, r'],—a(i)) ± r1]),

we may assume that Po is free. Replacing a by t2Na with a suitable N, we

may also assume that a maps PqM into Pq[î]. By Lemma 3.2 we are reduced

to the case where a ao + ta\ for some e-hermitian maps Do, ol\ : Po — ^0 •

LEMMA 5.3. If for a constant matrix ß,

a 1 + (t - l)ß e GLn(A[t, r1]) n Mn(A[t]),

then there exists an N such that (1 — ß)NßN 0.

Proof This is Corollary 2.4 of [2]. For the convenience of the reader we

reprove it here.

Writing the inverse of a as a Laurent polynomial and equating coefficients

in the identity

1 aa"1 (1 - ß + tß)in-qt~qH 1- 7_if"1 + 70 + 71 r H h 7'//)
we get

(1 - ßYf-q 0, (1 - ß)l-q+\+ ßj -q=0,
(1 - ß)l-\+ /?7—2 0, (1 - /?)7o + ßl~\ 1

and

(1 - /3)7i + /3y0 0, (1 - ß)jp + ß^p-% =0, ß% 0.

From the first line we get (1 — ß)q^-t 0, from the third /^+17o 0 and

then from the middle one ßp+l(l — ß)q 0.

We put ß d(1)-1di : Po —> Po, so that

a(l )~la= l + (t-l)ß.
We will repeatedly use the fact that ß is adjoint with respect to a, a(l), a0, a\,
by which we mean that aß ß*a, and so on. The same clearly holds for

any polynomial in ß with integral coefficients.
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By Lemma 5.3 we can find an integer N such that ßN(l — ß)N 0.

Denoting by Z[ß] the subring of End^(Po) generated by ß we can write

Z[ß] Z[ß]e x Z[ß](l - e), where e is an idempotent of the form ß + v
and v is a nilpotent matrix. Note that e and v are polynomials in ß and

therefore they commute with ß and with each other. If we decompose Po as

ePo + (1 — e)Po and represent A-linear endomorphisms of Po as 2 x 2 block
matrices, we have

1 °) p=(l + Ul 0

0 0/' PV0 V2

a=(a" ai2
and

a
v
ea12 a22

Computing the product we see that the condition «* ea implies that

«12(1 — y2) — —y*«12 «H — e«n and «22 e«22 •

From this we immediately deduce

«12(1 — y2t — (—^*)^«i2

for any natural integer k. Since v\ and y2 are nilpotent, this implies that
«12 0. Thus « is of the form

«11^(1 + yx) — «nui 0

0 «22(1 + (t - l)u2^
and (Po[M_1],g) splits as a hermitian space.

Since «, «n and «22 are symmetric, evaluating the above matrix at t 1

we see that

«11^1 yi «11 and «22^1 y2 «22 •

The first block can be written as

cj\ «nfiT + — t
1

y\) — «ii^(l + (1 — t~l)y\).
Since (1 - t~l)yx is nilpotent, the formal power series

n (1 + (1 - rVi)~1/2 (~i/2)(d - t~l)vx)k
is a Laurent polynomial and we can replace the first block by rfc^n —
Similarly, the power series

t2 (1 + (f - l)/y2)-'/2 (- 1

is a Laurent polynomial and we can replace the second block by t2*o-2t2 a22.
This shows that

(Polt, r>], a)~P0e[t,r'], ton) 1 (P0(l - e)[t, '], a22),
thus proving the surjectivity of ß.
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