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Proof of the lemma. Write ex 7 ~F ht^, where <5 is constant and 7 °f
degree less than N. Assume that N is at least 2. Since S is e-hermitian and

2 is invertible in A we can write (5 a + ecr* • Then

is of degree < N - 1 and after N - 1 such transformations we get a linear

matrix.

Writing a ao + ta\ as a0(l + vt) we see immediately that, a being

invertible, v is nilpotent. The formal power series

T d + vtr1'2 Y<{~TYvfF

is a polynomial. From a ea* we get — eao and u*Gq eaou. This

implies that r*aq eaot and therefore

riar T*ao(l + ut)T aor(l + vt)r ao

This proves that (P, a) is Witt equivalent to (P(0),a(0)) and is, therefore,

hyperbolic.

4. The Witt group of torsion modules

Let M be a finitely generated right A [t] -module and suppose that it is

a t-torsion module and that it is projective as an A-module. Obviously, it
will be finitely generated over A. We denote by the left A[t]-module
Horner](M,A[t, t~l]/A[t]) and we consider it as a right module through the

involution on A[t].
Recall that, as an A-module, the quotient A[t, t~l]/A[t] can be written as

a direct sum

A[t\t~l]/A[t] At"1 ©Ar2 © • • •

Thus, to any / G UomA[î](M,A[t,t~l]/A[t]) we can associate an A-linear map
/_i : M —> A, which is defined as the composite of / with the projection
onto Ar1.
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Proposition 4.1. The map

ddM: Horn m(M,A[t,t~l]/A[t])—> HornA(M, A) M*

obtained by associating /_ i to f is a functorial A-linear isomorphism.

Proof. It is clear that d is A-linear. To show that it is bijective we
construct its inverse. Given any g G M* define g by the (finite sum

g(x) t~lg(x) + t~2g(tx) + t~3g(t2x) H

It is easy to check that g G (g)-\ g and /_i =f. Functoriality is

clear.

COROLLARY 4.2. For any finitely generated t-torsion module M which
is projective as an A-module the canonical homomorphism M —> is an

isomorphism.

Proof. It suffices to remark that the diagram

M

can can

AfM M**

commutes and that M M** is an isomorphism.

An e-hermitian t-torsion space (or, briefly, a t-torsion space) is a pair
(M, consisting of a finitely generated t-torsion right A[t]-module M
which is projective as an A-module, and a perfect e-hermitian pairing

): M x M —» A[7, t~1]/A[t]. Giving is the same, of course, as giving
its adjoint p: M —> defined by p(a)(b) (a,b).

Isometries and orthogonal sums are defined in the obvious way. For any
subset X C M we define its orthogonal as

X1 {j M I (x,y) 0 VxGX}.

A sublagrangian of (M, p) is an A [t] -submodule L of M which satisfies the

following two conditions:

(1) It is contained in its own orthogonal: L Ç Zr1.

(2) The quotient M/L is projective over A (which is the same as saying that

L, as an A-module, is a direct factor of M).



THE WITT GROUP OF LAURENT POLYNOMIALS 369

A sublagrangian L is a lagrangian if L Zr1. A t-torsion space is

metabolic if it has a lagrangian. The Witt group of t-torsion spaces is

the quotient of the Grothendieck group of t-torsion spaces with respect to

orthogonal sums, modulo the subgroup generated by the metabolic spaces. We

will denote it by Wtors(A[t]). Lemma 4.6 below will show that the opposite
of the class of (M, p>) is the class of (M, —p).

LEMMA 4.3. Let M and N be finitely generated t-torsion modules and

i: N —> M an A[t] -linear homomorphism. Assume that as A-modules M
and N are projective. Then the map fl : is surjective (respectively
injective) if and only if i* : M* —> N* is surjective (respectively infective).

Proof. Look :

s"! I9"

M* N*

PROPOSITION 4.4. Let (M, <p) be a t-torsion space and L an A[t]-submodule
M/L is pi'ojective over A, then L and L1- is a direct factor

of M as an A -module.

Proof. First observe that as an A-module L is finitely generated and
projective. Let i: L — M be the natural injection. By Lemma 4.3 the map
f o p is surjective, thus the sequence

is exact. Hence L1- is a direct factor of M as an A-module; in particular it
is A-projective. Identifying L with L^ we can write the dual sequence as

0 — L A M(L-L)S—> o _

Notice that it is exact by Lemma 4.3. Again by Lemma 4.3 the sequence

0 —+ L±J- —> M(L-1)»—> 0

is exact because L1-isa direct factor of M as an A-module. Since
comparing the last two sequences we get the result.
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We now prove a fundamental result on the equivalence of t-torsion spaces.

THEOREM 4.5. Let (M, p) be an e-hermitian t-torsion space and L a

sublagrangian of (M, p). The quotient L^/L carries a natural structure of
t-torsion e-hermitian space and its class in Wtors(A[t]) is the same as that of
(M,p).

Proof We first prove the following lemma.

LEMMA 4.6. Let (M, p) be any e-hermitian t-torsion space. The space

(M, <p) _L (M, —p) is metabolic.

Proof of Lemma 4.6. We show that the image L À(M) of the

diagonal map M A M 0 M is a lagrangian. The condition L Ç L1- is

immediately verified. The quotient (Af®M)/L is isomorphic to M, hence

it is projective over A. It remains to see that L1- Ç L. If (a,b) G L1- we
have 0 ((a,b),(x,x)) (a — b,x) for any x G M. Since the pairing is

perfect, this implies a — b, i.e. (a,b) G L.

We now prove the theorem. By Proposition 4.4, L± is a direct factor of
M as an A-module. Since LÇL1 is also a direct factor of M, the quotient

L^/L is projective. Denoting by ä, b the classes modulo L of two elements

a,b G L, we define the hermitian structure of Ll/L by (a,b) (a,b).
It is clear that (a,b) only depends on ä and b. We first check that this

pairing defines a t-torsion space. It is clearly e-hermitian. The injectivity of
the adjoint map L^/L —> (L^/L)# follows immediately from Proposition 4.4.

To show surjectivity consider any A[t]-linear map /: L-1 A[t, t~l]/A[t].
Since L1- is a direct factor of M as an A-module, /, by Lemma 4.3, extends

to an A[t\ -linear map /: M —» A[t, t~l]/A[t]. Choose an m G M for which

f — (/n, •). If / vanishes on L, then m is in L^~. This proves that L±/L is

a t-torsion space.
To show that L^/L is equivalent to (M, p) we check that the image of the

diagonal map A: L^ —> MeL^/L is a lagrangian of (M, —p)LLL/L which

is, therefore, metabolic. It is easy to check that AfjJ-) is contained in its own

orthogonal. Conversely, if (a,b) G MSL^/L is orthogonal to every (x,x), then

(a — b,x) =0 for every xGL1. This means that a — b is in L±-l which by

Proposition 4.4 coincides with L. We thus have (a,b) (a, a) G À(L1-).

The next proposition connects the Witt group of t-torsion spaces with the

Witt group of A.
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Proposition 4.7. The isomorphisms

dM- Horn A[t)(M,A[t,rl]/A[t])Horn

induce a surjective homomorphism

dw: Mf])-»W(A).

Proof. Associating to any t-torsion space (M,p) the hermitian space

(M, <9m o (p) preserves isometries and orthogonal sums and, by Lemma 4.3,

transforms metabolic t-torsion spaces into hyperbolic spaces (with the same

lagrangian). Therefore it induces a homomorphism

dw: Uv„rl(.4|/|) -,
To find a preimage (M,ip) of a space (M, a) over A consider M as an

A[t]-module annihilated by t and replace a: M —>• M* by ip d^1 o a.

5. The Witt group of extended spaces

Let Wf(A[t,t~1]) be the group defined in the introduction.

THEOREM 5.1. Let A he an associative ring with involution, in which 2
is invertible. The homomorphism

W(A) © W(A) -> W'(A[t> r1])

mapping (£,rj) to Ç + trj is an isomorphism.

Proof. The injectivity of ijj is based on the following result, whose proof
will be given in §6.

PROPOSITION 5.2. There exists a homomorphism

Res: W'(A[t,r1]) -> W(A)

with the following properties :

R\ : For any constant space £ G W(A) C W'(A[t, t~[]), Res(0 0.

R2 : For any constant space f G W(A) C W'(A[t, t~1]), Resit • 0 £.

Proof. See Theorem 6.7.
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