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366 M. OJANGUREN AND I. PANIN

COROLLARY 2.4. Suppose that A is a ring with involution, in which 2 is
invertible. Then

H*(Z/2,Ko(Alt, t'])/Ko(A)) = HA(Z /2, K_1(A)) .

3. THE WITT GROUP OF POLYNOMIAL RINGS

THEOREM 3.1. Let A be an associative ring with involution, in which
2 is invertible. Let € be 1 or —1 and let W be the Witt group functor of
e-hermitian spaces. The natural homomorphism

W(A) — W(AlD
is an isomorphism.

Proof. 1t suffices to show that the homomorphism W(A[z]) — W(A) given
by the evaluation at ¢+ = 0 is an isomorphism. Surjectivity is obvious. To
prove injectivity let (P, ) be a space over A[f] and (P(0), a(0)) its reduction
modulo ¢. Suppose that (P(0), «(0)) is isometric to some hyperbolic space
H(Q). Choosing a projective module Q' such that Q& Q' is free and adding
to (P,a) the space H(Q'[t]) we may assume that P(0) is the hyperbolic
space over a free module. The class of P in Ky(A[f])/Ko(A) = Ni(A) is
a symmetric element. By Corollary 2.4 it can be written as a 4 a*, hence,
adding to (P, «) a suitable free hyperbolic space, we may assume that (P, o)
is of the form

HA"1) L (RS R",).

Let R’ be an A[f]-module such that R @ R’ is free. Adding to (P,«) the
hyperbolic space H(R') we are reduced to the case in which P is free and
o 1s an invertible e-hermitian matrix with entries in A[f].

LEMMA 3.2. Let o = ea™ € M, (A[t]) be any e-hermitian matrix. There
exist an integer m and a matrix T € GL,12,(A[?]) (actually in E,»,(Alt]))

such that
T T = Qo+ tay,
0 x

where o and «; are constant matrices and x is a sum of hyperbolic blocks

(601 é) of various sizes.
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Proof of the lemma. Write o = + 61", where ¢ is constant and 7 of
degree less than N. Assume that N is at least 2. Since § is e-hermitian and
2 is invertible in A we can write 6 = o + o™ . Then

1 ¢ —gkpl y+oN +ec* 0 0 1 0 0
0 1 0 0 0 1 { 1 0
0 0 1 0 e 0 —otV1 0 1

is of degree < N —1 and after N — 1 such transformations we get a linear
matrix. [

Writing o = ag + ta; as ao(l + v1) we see immediately that, o being
invertible, v is nilpotent. The formal power series

r=0+v)T 2= ()t

is a polynomial. From o« = ea* we get of = eap and v*ag = eaor. This
implies that 7*aj = eap7 and therefore

a1 = 77 ap(1 + vt = apT(1 + vHT = g -

This proves that (P,«) is Witt equivalent to (P(0), «(0)) and is, therefore,
hyperbolic. [

4. THE WITT GROUP OF TORSION MODULES

Let M be a finitely generated right A[f]-module and suppose that it is
a t-torsion module and that it 1s projective as an A-module. Obviously, it
will be finitely generated over A. We denote by M! the left A[f]-module
Homy(M ,Alt,t711/A[f]) and we consider it as a right module through the
involution on A[z].

Recall that, as an A-module, the quotient A[f,#7!] /A[f] can be written as
a direct sum

Alt,t A=At @A e -

Thus, to any f € Homun(M, Alx, 1 /A[f]) we can associate an A-linear map
f-1: M — A, which is defined as the composite of f with the projection
onto At~ !.
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