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THE WITT GROUP OF LAURENT POLYNOMIALS

by Manuel OJANGUREN and Ivan PANIN

ABSTRACT. We give a direct, self-contained proof of the fact that for a large class of
rings A, in particular for all regular rings with involution, W(A[z, 1 /t]) = WA)DW(A).

1. INTRODUCTION

The purpose of this note is to give a short direct proof of two fundamental
theorems on the Witt group of polynomials and Laurent extensions of a
ring A. These theorems were proved independently by M. Karoubi [3] and by
A. Ranicki [5]. We will state them under the most general conditions on A
and for their proofs we will use nothing more than a general result on the
K-theory of Laurent polynomials. In the last section we will show, by two
counterexamples, that the assumptions we make on A are necessary.

We begin by recalling briefly some definitions. We refer to [4] for a more
detailed exposition and for the proofs of the few basic results that we will
use.

Let A be an associative ring with an involution denoted by a — a°.
Except in §2 we will always assume that 2 is invertible in A. If M is a
right A-module, we denote by M™* its dual Homs(M,A) endowed with the
right action of A given by fa(x) = a°f(x) forany f: M — A and a € A. If
P is a finitely generated projective right A-module we identify it with P**
through the canonical isomorphism mapping x € P to x: P* — A defined by
x(f) = fx).

Let € be 1 or —1. An e-hermitian space over A is a pair (P, ) consisting
of a finitely generated projective right A-module P and an A-isomorphism
a: P — P* satisfying a = ea™. For brevity e-hermitian spaces will be called

spaces. A 1-hermitian space (over a commutative ring A) is also called a
quadratic space.
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Two spaces (P, o) and (Q, ) are isometric if there exists an A -isomorphism
@: P — Q such that the square

P—¢—>Q

b

P* Q*
(10*

commutes. A space is hyperbolic if it is isometric to a space of the form
HP) = (PP, (°})) .
The orthogonal sum of two spaces (P,«) and (Q,(5) is the space
(P,o) L(Q,0)=P®Q,adp).

If (P, ) is a space and M a submodule of P we denote by M~ the orthogonal
of M, defined by the exact sequence

0 — Mt — p 2%

)

where i* is the dual of the inclusion i: M — P. A submodule M of P is
totally isotropic if M C M. A sublagrangian of a space (P,q) is a totally
isotropic direct factor of P. A lagrangian of (P, ) is a sublagrangian L such
that L = L. For instance, P and P* are lagrangians of H(P).

The Witt group W(A) of e-hermitian spaces over A is the quotient of the
Grothendieck group of e-hermitian spaces with respect to orthogonal sums,
by the subgroup generated by all hyperbolic spaces. We say that two spaces
are Witt equivalent if they represent the same element of W(A).

Consider now the rings A[f] and A[t,#~!], endowed with the involution
that fixes ¢ and maps a € A to a°. For the ring A[t,t~!] we introduce a
variant W/(A[¢t,t!]) of the Witt group. We first consider the Grothendieck
group Q of e-hermitian spaces over A[t,t!] which are extended from A
as A[t,t!]-modules, and its subgroup N generated by the hyperbolic spaces
H(P) where P is extended from A. We then define W/(A[t,t~']) as Q/N.
Clearly W/(A[t,t~']) maps canonically to W(A[t,t~']). Here are our results.

A (THEOREM 3.1). Let A be an associative ring with involution, in which
2 is invertible. The canonical homomorphism

W(A) — W(A[z])

is an isomorphism.
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B (THEOREM 5.1). Let A be an associative ring with involution, in which
2 is invertible. The homomorphism

Wi WA) @ W) — WAL ']

mapping (€,m) to & +tn is an isomorphism.

C (THEOREM 7.1). Let A be an associative ring with involution, in which
2 is invertible. Let

w: WAL, ') — WAL ')

be the canonical homomorphism.
(a) If H*(Z/2,K_1(A)) =0, then ¢ is surjective.
(b) If Ko(A) = Ko(A[f]) = Ko(A[t,t71]), then @ is an isomorphism.

Two examples will be constructed in §8 to show that the assumptions in
(a) and in (b) cannot be omitted.

An amusing application of B is the following result:

D (PROPOSITION 6.8). Let A be a commutative semilocal ring in which
2 is invertible. Let (P,a) be a quadratic space over A. If (P, ) is isometric
to (P,t-c) over Alt,t™ '], then (P,c) is hyperbolic.

We remark that in general, even for a commutative local ring, there is no
residue map

Res: W(A[t, 17 1]) — W)

satisfying the following two properties :
e For any constant space £ € W(A) C W(A[t,t7']), Res(¢) =0.
o For any constant space £ € W(A) C W(A[t,7']), Res(t- &) = €.
In fact, the existence of such a residue map immediately implies the
injectivity of
porh: WA)©WA) — WAL,

which may fail, as in Example 8.1. However, there exists a residue map

Res: W'(A[t,r~']) — W(A) (Proposition 5.2) which yields the injectivity of 1.
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We now recall three elementary, well-known facts about hermitian spaces.

PROPOSITION 1.5. Let (P,a) be any space. Then:
The space (P,a) L (P,—a) is hyperbolic.
2. If L is a lagrangian of (P, ), then (P,c«) is isometric to H(L).

If M is a sublagrangian of (P, ), then the map o induces on M+ /M a
natural structure of hermitian space that makes it Witt equivalent to (P, ).

2. K-THEORETIC PRELIMINARIES

We recall a few results proved in the twelfth chapter of Bass’ book [1]. For
any ring A we denote by Ky(A) the Grothendieck group of finitely generated
projective right A-modules and by K;(A) the abelianized general linear group
of A: Ki(A) = GL(A)/[GL(A), GL(A)]. By Whitehead’s lemma K;(A) is also
the quotient of GL(A) by the subgroup E(A) generated by all elementary
matrices over A.

For any functor F from rings to abelian groups we denote by N F(A)
the kernel of the map F(A[f]) — F(A) obtained by putting ¢ = 0. Similarly,
we denote by N_F(A) the kernel of F(A[t™!]) — F(A) obtained by putting
t~1 = 0. The inclusions of A[f] and A[t~!] into A[t,#~!] define a map

NLF(A) & N_F(A) — F(A[1,1'])

whose cokernel will be denoted by LF(A). The functor LK; turns out to be
naturally isomorphic to K,, hence we will denote LK; by K;_; for i =1
and also for i = 0.

THEOREM 2.1. Let A be any associative ring.
(a) For i =0 or 1 there exists a natural embedding

Ait Kis1(A) — Ki(Alt, ')
such that the composite
Ki1(A) 25 KA, ') — LKi(A) = Ki_ 1 (A)

is the identity.
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(b) The embedding X\; and the canonical homomorphism
N1Ki(A) — Ki(Al1,17'])
yield canonical decompositions
Ki(Alt, ') = Ki(4) @ N1 K1(4) & N_K1(A) ® Ko(4)

and

Ko(Alt,t']) = Ko(A) @ N1 Ko(A) & N-Ko(A) & K_1(A4).

Proof. See [1], Theorem 7.4 of chapter XII. [
We will also use the following well-known result.

PROPOSITION 2.2. If 2 is invertible in A, the groups N1 K;(A) are uniquely
divisible by 2.

Proof. By [1], XII, 5.3, every element of N K;(A) can be represented
by a matrix « = 1+ vt, with v a nilpotent matrix of M,(A). Let

o0
PX) =Y ("A)Xx" € Z[1/2][X].
0
Then P(vt) € M,(A[¢t]) and (P(I/t))2 = 1 4 vt. This shows that N, K (A) is
divisible by 2. To show uniqueness it suffices to show that N, K;(A) has no
2-torsion. Take o = 1 4 vt as before and suppose that o € E(A[t]). Put
s =12 4+ vt), so that a®> = 1 + vs. Since

oo

f = Z (1’/12)Vn—lsn
1
we have M,(A)[f] = M,(A)[s]. If o?> = 1 + vs € E(A[s]) = E(M,(A)[s]) we
clearly also have a = 1+ vt € E(M,(A)[t]). [

COROLLARY 2.3. If 2 is invertible in A, the groups NLKy(A) are uniquely
divisible by 2.

Proof. Ky(A) is a direct factor of K;(A[X,X!]), hence N1Ky(A) is a
direct factor of Ny K;(A[X, X~ ']D. [

Assume now that A has an involution. Associating to any projective module
its dual and to any matrix its conjugate transpose yields actions of Z/2 on
Ko and K; which are compatible with the decompositions of Theorem 2.1.
From Corollary 2.3 we immediately deduce
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COROLLARY 2.4. Suppose that A is a ring with involution, in which 2 is
invertible. Then

H*(Z/2,Ko(Alt, t'])/Ko(A)) = HA(Z /2, K_1(A)) .

3. THE WITT GROUP OF POLYNOMIAL RINGS

THEOREM 3.1. Let A be an associative ring with involution, in which
2 is invertible. Let € be 1 or —1 and let W be the Witt group functor of
e-hermitian spaces. The natural homomorphism

W(A) — W(AlD
is an isomorphism.

Proof. 1t suffices to show that the homomorphism W(A[z]) — W(A) given
by the evaluation at ¢+ = 0 is an isomorphism. Surjectivity is obvious. To
prove injectivity let (P, ) be a space over A[f] and (P(0), a(0)) its reduction
modulo ¢. Suppose that (P(0), «(0)) is isometric to some hyperbolic space
H(Q). Choosing a projective module Q' such that Q& Q' is free and adding
to (P,a) the space H(Q'[t]) we may assume that P(0) is the hyperbolic
space over a free module. The class of P in Ky(A[f])/Ko(A) = Ni(A) is
a symmetric element. By Corollary 2.4 it can be written as a 4 a*, hence,
adding to (P, «) a suitable free hyperbolic space, we may assume that (P, o)
is of the form

HA"1) L (RS R",).

Let R’ be an A[f]-module such that R @ R’ is free. Adding to (P,«) the
hyperbolic space H(R') we are reduced to the case in which P is free and
o 1s an invertible e-hermitian matrix with entries in A[f].

LEMMA 3.2. Let o = ea™ € M, (A[t]) be any e-hermitian matrix. There
exist an integer m and a matrix T € GL,12,(A[?]) (actually in E,»,(Alt]))

such that
T T = Qo+ tay,
0 x

where o and «; are constant matrices and x is a sum of hyperbolic blocks

(601 é) of various sizes.
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Proof of the lemma. Write o = + 61", where ¢ is constant and 7 of
degree less than N. Assume that N is at least 2. Since § is e-hermitian and
2 is invertible in A we can write 6 = o + o™ . Then

1 ¢ —gkpl y+oN +ec* 0 0 1 0 0
0 1 0 0 0 1 { 1 0
0 0 1 0 e 0 —otV1 0 1

is of degree < N —1 and after N — 1 such transformations we get a linear
matrix. [

Writing o = ag + ta; as ao(l + v1) we see immediately that, o being
invertible, v is nilpotent. The formal power series

r=0+v)T 2= ()t

is a polynomial. From o« = ea* we get of = eap and v*ag = eaor. This
implies that 7*aj = eap7 and therefore

a1 = 77 ap(1 + vt = apT(1 + vHT = g -

This proves that (P,«) is Witt equivalent to (P(0), «(0)) and is, therefore,
hyperbolic. [

4. THE WITT GROUP OF TORSION MODULES

Let M be a finitely generated right A[f]-module and suppose that it is
a t-torsion module and that it 1s projective as an A-module. Obviously, it
will be finitely generated over A. We denote by M! the left A[f]-module
Homy(M ,Alt,t711/A[f]) and we consider it as a right module through the
involution on A[z].

Recall that, as an A-module, the quotient A[f,#7!] /A[f] can be written as
a direct sum

Alt,t A=At @A e -

Thus, to any f € Homun(M, Alx, 1 /A[f]) we can associate an A-linear map
f-1: M — A, which is defined as the composite of f with the projection
onto At~ !.
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PROPOSITION 4.1. The map
O = Oy : M" = Homypy (M, Alt,t'1/A[f]) — Homy(M,A) = M*
obtained by associating f_| to f is a functorial A-linear isomorphism.

Proof. 1Tt is clear that 0 is A-linear. To show that it is bijective we
construct its inverse. Given any g € M* define g by the (finite !) sum

g = 171900 + 12 g(m) + 1 g(@Px) + -
It is easy to check that § € M¥, (§)_; = g and f: = f. Functoriality is
clear. [

COROLLARY 4.2. For any finitely generated t-torsion module M which
is projective as an A-module the canonical homomorphism M — M™ is an
isomorphism.

Proof. 1t suffices to remark that the diagram

M

can / \ can

(8;})—108Mﬁ

commutes and that M = M** is an isomorphism. [

An e-hermitian t-torsion space (or, briefly, a t-torsion space) is a pair
(M, (,)) consisting of a finitely generated ¢-torsion right A[f]-module M
which is projective as an A-module, and a perfect e-hermitian pairing
(,): M x M — Alt,t"'1/A[f]. Giving (,) is the same, of course, as giving
its adjoint ¢: M — M" defined by @(a)(b) = {(a,b). ‘

Isometries and orthogonal sums are defined in the obvious way. For any
subset X C M we define its orthogonal as

Xt={yeM|{(x,y)=0 VxcX}.

A sublagrangian of (M, ) is an A[t]-submodule L of M which satisfies the
following two conditions:

(1) It is contained in its own orthogonal: L C L.

(2) The quotient M/L is projective over A (which is the same as saying that
L, as an A-module, is a direct factor of M).
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A sublagrangian L is a lagrangian if L = L+. A t-torsion space is
metabolic if it has a lagrangian. The Witt group of z-torsion spaces is
the quotient of the Grothendieck group of #-torsion spaces with respect to
orthogonal sums, modulo the subgroup generated by the metabolic spaces. We
will denote it by W,,,(A[f]). Lemma 4.6 below will show that the opposite
of the class of (M, ) is the class of (M, —).

LEMMA 4.3. Let M and N be finitely generated t-torsion modules and
i: N — M an Alt]-linear homomorphism. Assume that as A-modules M
and N are projective. Then the map i*: M* — N¥ is surjective (respectively
injective) if and only if i*: M* — N* is surjective (respectively injective).

Proof. Look:

[]

PROPOSITION 4.4.  Let (M, @) be a t-torsion space and L an A[t]-submodule
of M. If M/L is projective over A, then L =L+t and L* is a direct factor
of M as an A-module.

Proof.  First observe that as an A-module L is finitely generated and
projective. Let i: L — M be the natural injection. By Lemma 4.3 the map
i* o is surjective, thus the sequence

0—r1t L Poe s Ly

is exact. Hence L is a direct factor of M as an A-module; in particular it
is A-projective. Identifying L with L¥ we can write the dual sequence as

0—L-5mE gy g
Notice that it is exact by Lemma 4.3. Again by Lemma 4.3 the sequence

0— L+ i gy

is exact because L is a direct factor of M as an A-module. Since ! — +o,
comparing the last two sequences we get the result. [
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We now prove a fundamental result on the equivalence of 7-torsion spaces.

THEOREM 4.5. Let (M,p) be an e-hermitian t-torsion space and L a
sublagrangian of (M, ). The quotient L+ /L carries a natural structure of
t-torsion €-hermitian space and its class in W,,(A[t]) is the same as that of

M, p).

Proof. We first prove the following lemma.

LEMMA 4.6. Let (M,p) be any e-hermitian t-torsion space. The space
M, ) L (M, —p) is metabolic.

Proof of Lemma 4.6. We show that the image L = A(M) of the
diagonal map M L MeMis a lagrangian. The condition L C Lt is
immediately verified. The quotient (M & M)/L is isomorphic to M, hence
it is projective over A. It remains to see that L+ C L. If (a,b) € L+ we
have 0 = {(a,b), (x,x)) = (a — b,x) for any x € M. Since the pairing (,) is
perfect, this implies a = b, i.e. (a,b) e L. [

We now prove the theorem. By Proposition 4.4, L' is a direct factor of
M as an A-module. Since L C L+ is also a direct factor of M, the quotient
L+ /L is projective. Denoting by @,b the classes modulo L of two elements
a,b € L, we define the hermitian structure of L+/L by (a,b) = (a,b).
It is clear that (a,b) only depends on @ and b. We first check that this
pairing defines a z-torsion space. It is clearly e-hermitian. The injectivity of
the adjoint map L*/L — (L+/L)* follows immediately from Proposition 4.4.
To show surjectivity consider any A[f]-linear map f: L+ — A[zr,t~']/A[1].
Since L’ is a direct factor of M as an A-module, f, by Lemma 4.3, extends
to an A[f]-linear map f: M — Alt,t=']1/A[f]. Choose an m € M for which

f={m,). If f- vanishes on L, then m is in L*. This proves that L /L is
a t-torsion space.

To show that L+ /L is equivalent to (M, ) we check that the image of the
diagonal map A: Lt — M@ L+ /L is a lagrangian of (M, —y) L L+ /L which
is, therefore, metabolic. It is easy to check that A(L') is contained in its own
orthogonal. Conversely, if (a, bye M@L*- /L is orthogonal to every (x,X), then
(a —b,x) = 0 for every x € L*. This means that a—b is in L*++, which by
Proposition 4.4 coincides with L. We thus have (a,b) = (a,a) € ALY). 0O

The next proposition connects the Witt group of z-torsion spaces with the
Witt group of A.
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PROPOSITION 4.7. The isomorphisms
Oy Homgp (M, Alt,t11/Alt]) — Homa (M, A)
induce a surjective homomorphism
0" Wiops(Al1]) — W(A).
Proof. Associating to any ¢-torsion space (M,y) the hermitian space
(M, Oy o ) preserves isometries and orthogonal sums and, by Lemma 4.3,

transforms metabolic #-torsion spaces into hyperbolic spaces (with the same
lagrangian). Therefore it induces a homomorphism

0" Wiors(Al1]) — W(A).

To find a preimage (M,p) of a space (M,a) over A consider M as an
A[t]-module annihilated by ¢ and replace a: M — M* by ¢ = 0;,' ocar. [

5. THE WITT GROUP OF EXTENDED SPACES
Let W/(A[t,t~']) be the group defined in the introduction.

THEOREM 5.1. Let A be an associative ring with involution, in which 2
is invertible. The homomorphism

1 W(A) & W(A) — WALz, 1'])
mapping (&,n) to & +tn is an isomorphism.
Proof. The injectivity of % is based on the following result, whose proof

will be given in §6.

PROPOSITION 5.2. There exists a homomorphism
Res: W (A[t,t71]) — W(A)

with the following properties :
Ry : For any constant space § € W(A) C W/(Alt,t7']), Res(¢) = 0.
Ry @ For any constant space £ € W(A) C W/(A[t,t7']), Res(r- &) = €.

Proof. See Theorem 6.7. [
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Assuming this proposition, suppose that for two elements &, € W(A) we
have £ +¢-n=0. Then 0 = Res({ +t-n) =7 and hence £ = 0.

We now turn to the surjectivity of ). We have to show that every hermitian
space (P, ) over Aft,t~!] with P = Py[t,+~'] is Witt equivalent to a space of
the form (Qo[t, 7', ) L (Q1[t,#7'],ta1). Let P; be a projective A-module
such that Py & P; = A" for some n. Replacing (P, a) by

(Polt,t '], @) L (Polt, t'1, —a(1)) L H(Py[t,t7']),

we may assume that P is free. Replacing o by *"«a with a suitable N, we
may also assume that o maps Py[¢] into P;[t]. By Lemma 3.2 we are reduced
to the case where o = g +ta; for some e-hermitian maps ag, o : Py — Py .

LEMMA 5.3. If, for a constant matrix 3,
a =1+ (- 1)8 € GL,(A[t,t ') N M, (A[]),
then there exists an N such that (1 — B)V3Y = 0.

Proof. This is Corollary 2.4 of [2]. For the convenience of the reader we
reprove it here.

Writing the inverse of o as a Laurent polynomial and equating coefficients
in the identity

l=aa' =1 = B+1B)(y—gt 4 +y-—1t  + v+ mt+ -+t
we get

1=0B87—=0, Ad=Pv—gt1+P7-4=0, ...,
1 =PBy-1+Pv-2=0, A =P+ Ly-1=1
and
A= +Brvw=0 ..., A=+ Lrp-1=0, p7,=0.

From the first line we get (1 — 8)?y_; = 0, from the third $°*!yy =0 and
then from the middle one At1(1 - B =0. [

We put 8 = a(1)"lay: Py — Py, so that

o) la=14+@¢—-1g.

We will repeatedly use the fact that 3 is adjoint with respect to o, a(1), o, o1,
by which we mean that o8 = *«, and so on. The same clearly holds for
any polynomial in § with integral coefficients.
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By Lemma 5.3 we can find an integer N such that N1 - BN = 0.
Denoting by Z[3] the subring of Ends(Py) generated by S we can write
Z18] = Z[Ble x Z[B](1 — e), where e is an idempotent of the form [ + v
and v is a nilpotent matrix. Note that ¢ and v are polynomials in 3 and
therefore they commute with § and with each other. If we decompose Py as
ePy + (1 — )Py and represent A-linear endomorphisms of Py as 2 x 2 block

matrices, we have
(1 0 3= I1+v; O >
“=\o o)’ N 0 2

o= ( P a12>(1+(t—1)ﬁ).

and

ey, an
Computing the product we see that the condition a* = ea implies that
ap(l — ) = —vian, af; =eann  and @, = €.
From this we immediately deduce
ap(l — ) = (=)o

for any natural integer k. Since v; and 1, are nilpotent, this implies that
a2 = 0. Thus « is of the form

Oé11f(1—|—1/1)—05111/1 0
0 an(l + (t — Diy)
and (Po[t,17 '], ) splits as a hermitian space.

Since a, a1 and ay, are symmetric, evaluating the above matrix at t = 1
we see that

apvy =vion  and  apv = v ag.
The first block can be written as
oy =ant(l+vy —t 'v) = a1l 4+ (1 — ).
Since (1 — ¢ Y2 is nilpotent, the formal power series
R R e L R N (i [(¢ B

is a Laurent polynomial and we can replace the first block by T 01T = Qq1t.
Similarly, the power series

m=1+ - D) 2= (T~ D)

is a Laurent polynomial and we can replace the second block by 70 = .
This shows that

(Polt, 171, ) = (Poelt, 1", tay) L (Po(1 — &)1, 17", ),
thus proving the surjectivity of . [
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6. THE RESIDUE

In this section we construct a residue map
Res: W/(Alr, ') — W(A)

satisfying R; and R, of §5.
The definition of Res will be preceded by a few preliminaries.

LEMMA 6.1. Let Py be a (finitely generated) projective A-module and
define M(a) by the exact sequence

0 — Polf] = Pglt]l — M(a) — 0,

where o is A[t]-linear. Suppose that its localization oy: Pylt,t™'] — Polt,t™ ]
is an isomorphism. Then, as an A-module, M(c) is finitely generated and
projective.

Proof. Decompose Pqt,t=!'] as a direct sum Po[t] @ t~'Po[t~!] of
A-modules. Let m be the projection onto the first summand. Then 3 =
p:g 1s an A-linear splitting of «. Hence M(c) is A-projective. It
is also finitely generated as an Afr]-module, hence, being annihilated by a
power of t, it is finitely generated as an A-module. []

—1
T O Oy

Let M = M(a) be as in the previous lemma. Assume that o is
e-symmetric. We define a pairing

M x M — Alt,t~'1/Alf]

by (a,b) = aloy '(b)), where a and b are representatives in P[¢] of
abeM.

LEMMA 6.2. If « is e-hermitian, then (,) is a perfect €-hermitian pairing.

Proof. Since «, is e-hermitian, denoting by x — x° the involution on A
we have
(@,b) = ale; ' (b)) = e(b(a, ' (@)))° = e(b,a@) .
This proves the first assertion.
We now check that the adjoint of (,)

x: M — Homuq(M, Alt,t™'1/Al]),

defined as x(@)(b) = (a,b), is an isomorphism. We first prove injectivity.
Suppose that, for some a and every x in M, x(a)(x) = 0. This means
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that a(a, L) € A[r] for every x € Pjlf]. We only have to show that
o, 1(a) ¢ Py[t]. Consider the diagram

Polf] ———  Homgu (P51, Alt])

l l

Polr, 1] —"— Homu(P3l1]. Alt. 1)

where the horizontal arrows are the canonical ones. Since Py[t] is projective
(and finitely generated!) over A[f], they both are isomorphisms. Therefore an
element b € Py[t.+~'] is in Py[f] if and only if, for any x € Pjlt], x(b)
is in A[f]. This is indeed the case for b = a;, Ya) because x(a, l(a)) =
e(ala, Lo)))° € Al by the very assumption on a. Thus injectivity is proved.
We now check that x is surjective. Let f: M — Alt,t71]/A[t] be an A[t]-linear
map. Since Py[t]* is projective, there exits an f which makes the right hand
square of the diagram

0 — Po[f] —2— Polf]* —2— M 0

| _
| f
L lf l
0 —— A[f] —— Alt.t7] —L— Aln.t /Al —— 0

commute, p and g being the canonical surjections. Clearly gofoa = 0, hence
there exists an A[f]-linear map a: Pp[t] — A[f] such foa =1ioa, i being
the inclusion A[t] — A[r.t~!]. We claim that x(a) = f. For this it suffices
to show that for any b € Py[t]* we have a(a, 1(b)) = f(b) modulo A[r]. We
denote by a, the localization of a at t and by f,: Polt,t~']* — A[z,t~!] the
unique A[f, 7 !]-linear extension of f. Observing that a; '(a) = q, o o ! we
get the following relations:

a(a; (b)) = (a; 0 o )(b) = f(b) = f(D).

This proves that x is surjective. [

Let now (Po[t.t~'].a) be an e-hermitian space. For any natural integer n
for which "o (Py[t]) C Po[f]* we define M(ca.n) by the exact sequence

0 — Po[f] = P31l — M(a.n) — 0
and equip it with the e-hermitian structure defined above:

(@.b) = a((P )~ (b)) .
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LEMMA 6.3. Let : (Po[t,t7 '], @) — (Qolt,t~'1,3) be an isometry and
assume that (Polt]) C Qolt], a(Polz]) C Polt]* and B(Qolt]) C Qolt]*. Then
M(o) and M(B) are Witt equivalent t-torsion spaces.

Proof. Consider the diagram

0
[
0 K
q
0 —— Polfl —*— Polt]* —=— M(e) —— 0
P p* [
qp

By Lemma 6.1 the module L, viewed as an A-module, is finitely generated
and projective. The map 1* is obtained from the map ¢ by dualizing over
A[t]. We denote the cokernel of ¥* by K and we denote the canonical map
Po[t]* — K by §. One may observe that K is isomorphic to LF (see §4 for
the notation) but we will not use this observation.

The A[f]-linear map 6 = g, o ¥*: Qplt]* — M(a) induces a map
0: M(B) — 0(Qolt]*)/0(B3(Qol])). The statement will be deduced from the
following claims.

(1) The map 6 is an A[¢]-linear isomorphism.

(2) The map g induces an A[t]-linear isomorphism

p: M(2)/0(Qol1]") — K.

(3) 8(B(Qp[t]) is a sublagrangian of M(c).
4) (B(BQol) = 6(Qole]*).

(5) The map 6 is an isometry of ¢-torsion spaces.

In fact, by (4), (5) and Theorem 4.5, M((3) is Witt equivalent to M(c).



THE WITT GROUP OF LAURENT POLYNOMIALS 377

We now prove the claims. The surjectivity of # is clear. To show injectivity,
suppose that x € ker(#). Choose a lift x € Qo[f]* of x. There exist a y € Qplz]
and a z € Pg[f] such that ¥*(8(y) —x) = a(z). Replacing « by ¢*ofFo1) we
get Y*(X) = Y*(B(y —1(z))). Since * is injective, this shows that x € Im(f3)
and hence x = 0.

To prove (2) observe that, since oa =go* ooy =0, g induces a
surjective map p: M(a)/0(Qolt]*) — K. Injectivity is also clear.

To prove (3) we first observe that 6(G(Qyp[r])) is a direct factor (as an
A-module) of M(a). In fact, by (2), 6(Qpl[f]*) is a direct factor (as an
A-module) of M(«) and, by (1), 8(8(Qolt])) is a direct factor of 6(Qp[t]™).
For any two elements a,b € Po[t]* let us denote by (a,b), the element
a(a; 1(b)), and similarly for (a,b) 5+ We then have

(a,b) 5 = (¥*(@), p*B)),

because v, is an isometry. Let now @,b € 8(3(Qolt])) and x,y € Qq[f] such
that a = ¢*(8(x)) and b = *(6(y)) are preimages of a and ». We have to
check that (@, b) = 0. This is the same as saying that (a,b)_ is in A[r].
This is indeed the case because

(@,b) = (V7 (B, v (BON),, = (B, B0)) 5 = BOG) € Al1].

We now prove (4). For any a € 0(5(Qo[t])) and any b € M(c) we choose
preimages a and b of the form a = ¢*(B(x)) and b = Y (y) with x € Qp[r]
and y € Qo[t,t~'1*. Then we have

(a,b), = (Y7 (B, U (), = (B, ¥) 5 = € yx)°,

which shows that, for any y € Qolr,7'1*, (¥*(8(Qolt])),b), is in A[r] if
and only if y € Qq[f]*, which is equivalent to b € 0(Qo[t]*).

We now prove (5). We already know that 6 is an A[f]-linear isomorphism.
A computation like the one above proves that it is an isometry. [

COROLLARY 6.4. Let (Pylt,t™'],a) be an e-hermitian space. Let n be
such that t*"a(Py[f]) C Polt]*. Then the class of M(c,n) in Wiors(Al]) does
not depend on the choice of n.

COROLLARY 6.5. Let (Po[t,t7 '], @) and (Polt,t= 1, B) be isometric spaces
and assume that for some natural integers m and n, " a(Po[t]) C Polt]* and

" B(Py[1]) C Polt]*. Then M(c,m) and M(B,n) are Witt equivalent t-torsion
spaces.

g o
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Proof. Let : (Polt,t7'1,2"a) — (Polt,t~']1,#"5) be an isometry
and let k be a natural integer such that *y(Py[f]) C Polf]*. Then
tfah: (Polt, 171, "a) — (Polt,t~ 11, 12"t%3) is an isometry and, by Lemma
6.3, M(a,m) and M(3,n + k) are Witt equivalent. Hence, by Corollary 6.4,
M(o,m) and M((B,n) are Witt equivalent as well. [

PROPOSITION 6.6. Associating to any space (Po[t,t™'], ) the torsion
space M(a,n) (for a suitable n) yields a homomorphism

res: WALt 7']) = Wiors(AL1]) .

Proof. By Corollary 6.5, associating to the isometry class of a space
(Polt, 171, o) the Witt class of the f-torsion space M(a, n) for some suitable
n is a well defined map. It is obvious that the orthogonal sum of two spaces is
mapped to the corresponding sum of z-torsion spaces, hence this map induces
a homomorphism w: Ky — W, (A[f]), where Kp is the Grothendieck group
of e-hermitian spaces of the form (Py[t,t7'], @). It is clear from the definition
of M(c,n) that a standard hyperbolic space H(Qolt,t~1]) is mapped to zero,
hence w induces a homomorphism res: W/(A[t,t7']) — Wion(Al]). L]

If we compose res with OV W,os(Alt]) — W(A) we get a homomorphism
Res = 8" ores: W(A[t,t71]) — W(A)

which we call residue.

THEOREM 6.7. The residue
Res: W/(A[t,t7 1) — W(A)

satisfies the following two properties:
Ry : For any constant space & € W(A) C W(A[t,t~']), Res(¢) = 0.
Ry : For any constant space £ € W(A), Res(t- &) = €.

Proof. The two properties immediately follow from the construction of

res. L]

An amusing application of the existence of Res is the following result.
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PROPOSITION 6.8. Let A be a commutative semilocal ring in which 2 is
invertible. Let (P, ) be a quadratic space over A. If (P, o) is isometric to
(P,t- ) over Alt, t~ 1], then (P, ) is hyperbolic.

Proof. Let ¢ be the class of (P, ) in W(A). In W'(A[£]) we have £ = t-£.
Applying Res to both sides we obtain £ = 0. Since A is semilocal, by Witt’s
cancelletion theorem we conclude that (P,«) is hyperbolic. [

7. THE WITT GROUP OF LAURENT POLYNOMIALS
Let W/(A[t,t~']) be the group defined in the introduction.

THEOREM 7.1. Let A be an associative ring with involution in which 2
is invertible. Let

©: WAl t7']) — WAL ']
be the canonical homomorphism.
(a) If H*(Z/2,K_1(A)) = 0, then ¢ is surjective.
(b) If Ko(A) = Ko(Alt]) = Ko(Alt, t~1), then ¢ is an isomorphism.

Proof of (a). Corollary 2.4 implies that
H*(Z/2, Ko(Alt,17'])/Ko(A)) = 0.

This means that every projective A[t,z~!]-module P is in the same class as
some projective module of the form

Polt,t "1 Q@ 0,

where Py is a projective A-module. Therefore, adding to a space (P,a) a
hyperbolic space H(Q') with Q ® Q' free, we may assume that P is of the

form Py[t,t~']. This means precisely that the class of (P, ) is in the image
of W(Als,r™'). O

Proof of (b). Surjectivity is obvious, because by assumption every
projective A[t,t!]-module is stably extended from A. Suppose that the class
of a space (Po[t,#~ '], @) vanishes in W(A[¢t,z7!]). This means that, for some
Q and R, there exists an isometry

(Polt,t '], ) L H(Q) ~ H(R).

Adding to both sides a suitable H(A[f,r~']") we may replace Q and R by

extended modules Qot,#7'] and Ro[z,#']. Then the isometry means precisely
that the class of (Pgy[t,#7'], ) vanishes in W/(A[r,t~']). [

[P S N
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We can restate assertion (b) of Theorem 7.1 as follows.

THEOREM 7.2. Let A be an associative ring with involution, in which 2
is invertible. Assume that Ko(A) = Ko(A[f]) = Ko(Alt,t~']). Then there exists
a natural homomorphism Res such that the sequence

0 — W(A) — WAL 1) 2% wa) — 0

is split exact. The homomorphism Res restricts to an isomorphism of t- W(A)
onto W(A).

8. TWO COUNTEREXAMPLES

In this section we show that the map W/(A[t,t~']) — W(A[t,t~']), in
general, is neither surjective nor injective.

EXAMPLE 8.1. We first recall the Mayer-Vietoris sequence associated to
a cartesian square of commutative rings (see [1], Ch. IX, Corollary 5.12). Let

R —— §

7| E

R — §
be a cartesian diagram of commutative rings, with f or g surjective. Denote

by Ko the kernel of the rank function on Ky. Then there is a commutative
diagram with exact rows

K(R) x Ki(S) — Ki(§) — Ko(R) — Ko(R) x Ko(S) — Ko(S)

ldet ldet l/\ max l/\ i \ l/\ max
G(R) X G(S) — G,,(S) — Pic(R) — Pic(R) x Pic(S) — Pic(S)

Let A be the local ring at the origin of the complex plane curve
Y2 = X2 — X3, A the normalisation of A and ¢ the conductor of A in
A. Applying the big diagram above to the cartesian squares

o~

A —— A Alt, ] —— A1,

l oo ] l

A/) —— (A/c) A/l ] —— @A/, ]
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it is easy to see that IA{B(A[t, 71 = C* @ Z = Pic(A[t,t~']). This shows
that a projective Az, ']-module P is stably free if and only if its maximal
exterior power A™(P) is isomorphic to A[z,77'].

Let I be an ideal representing (1,1) in C*@®Z = Pic(A[t,t~']). The module
underlying the space H(I @ Alt, 71 @ A[t,t71]) is free. In fact it is stably
free because its determinant is trivial, hence, by a well-known cancellation
theorem it is free. This shows that H(I @ A[t,t~']1 @ A[t,+~!]) is a quadratic
space of the form (Pg[t,t~ '], a) with Py free of rank 6 over A. Clearly this
space represents the zero element of W(A[t,r~']). We claim that its class in
W/(A[t,t~1]) is not trivial.

Since A 1is local, projective modules extended from A are free. If
H(I®A[t,t~']®A[r,t7']) were hyperbolic in W’(A[z,71]) it would be stably
isometric to H(A[t,t71] ® Aft,t7']1 ® A[t,r7!]) and hence, by the quadratic
cancellation theorem (see [4], VI, 6.2.5), it would be isometric to it. Recall
that, for any commutative ring R in which 2 is invertible and any finitely
generated projective R-module P, the even Clifford algebra Cy of H(P) is
of the form

Co = Endz(A\*"(P)) x Endr(\°“(P)),

where A““(P) (respectively A°“(P)) is the even (respectively odd) part of
the exterior algebra of P. In the case P =1 @ Alt,t~ '] ® A[t,t~'] we have

Co = Endyp, —y(AlL, 7' & I*) x Endyy, (Al ' P @ 1)

Suppose now that H(I ® A[t,t~'1?) and H(A[t,1~']%) are isometric. In this
case their even Clifford algebras would be isomorphic, hence the algebra
Endyp;,-1(Alt, 171 @ I°) would be a 4 x 4 matrix algebra. By Morita theory
the module A[z,77']?> @ I* would be of the form J* for some invertible ideal
J. Taking the fourth exterior power of both sides we would have 1?2 = J*,
which is impossible because I represents (1,1) in C* & Z.

This shows that, even for a one-dimensional local domain, the map
W/(Alr, ') — W(A[t,']) may fail to be injective.

EXAMPLE 8.2. We define a commutative ring A by the cartesian diagram
of real algebras

A — R[X, Y]

Ll

R~
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where C = R[x, y] = R[X, Y]/(X2+ Y?—1), 7 is the canonical projection and
¢ the canonical injection. Then C& C is the direct sum of its two submodules

P=Cio+1,-0+Cy(—x,1-y) and P =Ci(1—yx)+Ci(x1+Y)

and we can define an automorphism « of C[t,t~!1@ C[t,t~!] as the identity
on P’ and multiplication by ¢ on P. With respect to the canonical basis of
Clt,t='10 Clr, 1711,

Lol t(A+y)+1—y —tx 4+ x
-2 —1x + x (1—y+1+y)°

The matrix « has determinant equal to ¢ and thus lies in GL,(Clt, t=1]).
According to Theorem 7.4 of [1] its class in K;(C[t,#~!]) is the image of
P by the canonical injection A mentioned in §2. It is easy to see that P
is not free over C. In fact it turns out to represent the non trivial class of
Pic(C) = Z /2. Since the homomorphism ¢ in the cartesian square that defines
A is surjective, tensoring the diagram with R[z,77!] yields a Milnor patching
diagram
Alt,t7'] —— R[X, Y[t 1]

R[t,17'] ——  C[t,t7 1]
We can use this diagram and the matrix « (see for instance [1], Chapter IX,

Theorem 5.1) to patch a rank 2 free module Q over R[X,Y][t,z~'] with a
rank 2 free module R over R[z,#~ '] and get a rank 2 projective module

M ={(g,r) € 0 X R| a(m.(q)) = ta(r)}

over Alt,t~']. We now equip M with a skew-symmetric structure. To do this
we put on Q and on R the skew-symmetric structures defined, respectively,

by the matrices
0 1 B 0 1/t
0'——(_1 0> and 7'—<_1/r 0).

Since o*7a = o, the skew-symmetric structures o: Q — Q* and 7: R — R*
are compatible with the patching and therefore they define a skew-symmetric
structure @w: M — M* on M.

We claim that the class of this space is not in the image of W'([t,t']).
Extending to K_; the Mayer-Vietoris sequence associated to (1) (see [1],
Chapter XII, Theorem 8.3) we get an exact sequence

Ko(R[X, Y]) ® Ko(R) — Ko(C) — K_1(A) — K_|(R[X, Y]) ® K_i(R).



THE WITT GROUP OF LAURENT POLYNOMIALS 383

From the fact that regular rings have a vanishing K_;, that Ko(R[X,Y ) =
Ko(R) = Z and that Ko(C) = Z & Z/2, where the element of order
2 is the class of P, we easily deduce that K_i(A) = Z/2, generated
by the image of M. Thus, by Corollary 2.4, the class of M generates
H*(Z.)2,Ko(Alt,t7'])/Ko(A)) = Z/2. Consider now the homomorphism

w: WA, 171 — HX(Z/2, Ko(Alt, 1)/ Ko(A))

obtained by associating to any space its underlying projective module.
Since w((M,p)) # 0, (M,p) cannot be Witt equivalent to a space
supported by a module extended from A. This shows that the map
W/ (A[t,t71]) — W(A[t,t1]) is not surjective.

REMARK 8.3. We suspect that even if the assumption of (a) is satisfied
the map W'(A[t,+~']) — W(A[z,+~']) may not be injective, but we did not
find an example to confirm our suspicion.

ACKNOWLEDGMENT. We warmly thank Paul Balmer for carefully reading
various versions of this paper, dramatically reducing our output of mistakes.

REFERENCES

(11  BASS, H. Algebraic K-Theory. Benjamin, 19609.

[2]  BASs, H., A. HELLER and R. G. SWAN. The Whitehead group of a polynomial
extension. Inst. Hautes Etudes Sci. Publ. Math. 22 (1964), 61-79.

[3]  KAROUBI, M. Localisation de formes quadratiques, II. Ann. Sci. Ecole Norm.
Sup. (4) 8 (1975), 99-155.

[4]  KNUS, M.-A. Quadratic and Hermitian Forms over Rings. Grundlehren der
math. Wiss. 294. Springer, 1991.

[S]  RANICKI, A. A. Algebraic L-theory. Comment. Math. Helv. 49 (1974), 137-167.

(Recu le 23 mars 2000)

Manuel Ojanguren

IMA, UNIL
CH-1015 Lausanne
Switzerland

Ivan Panin

LOMI

Fontanka 27

Saint Petersburg 191011
Russia

e






	THE WITT GROUP OF LAURENT POLYNOMIALS
	...
	1. Introduction
	2.K-theoretic PRELIMINARIES
	3. The Witt group of polynomial rings
	4. The Witt group of torsion modules
	5. The Witt group of extended spaces
	6. The residue
	7. The Witt group of Laurent polynomials
	8. TWO COUNTEREXAMPLES
	...


