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7.2. COROLLARY (The Generalized Spectral Mapping Theorem). Let N
be a norm of degree n on a k-algebra A, and let o be an element of A.
For all polynomials F in k[x] we have the equations

(7.2.1) Ni(F() = Res(F, Ph) = | [ FOw)

i=1

in k, where A,...,\, are elements of any extension R O k such that
PNt =TT,(t — X)) in R[x].
In particular we have that Tr™(F(q)) = S FO).

Proof. Let P = PY be the characteristic polynomial of o with respect
to N. The norm N restricts, via the canonical k-algebra homomorphism
k[x] — A which sends x to «, to a norm on k[x], and the characteristic
polynomial of x with respect to this norm is P. On k[x] we have the norm N,
and the norms Nj and Ny of the Examples 6.1 and 6.2, and the characteristic
polynomial of x with respect to all three norms is P. It follows from the
Theorem that these three norms are equal. The equations (7.2.1) express the
equality of the norms applied to the polynomial F(x). Finally the expression
for the trace follows by considering the coefficient of "~ ! of the left and

right side of (7.2.1) applied to the polynomial ¢t — F(x) in k[f][x]. [

The formula Res(F, P) = H?zl F()\;) of Corollary (7.2) is the generalization
to rings of the well-known interpretation of resultants by the roots of the
monic polynomial P in the case when k is a field. If F is also monic and
F = H}"zl(x — ;) in R[x] we have

Res(F,P) = [[FOw =[] — )
i=1

i=1 j=1

which is often used as a definition of the resultant in the case k is an
algebraically closed field.

8. THE DISCRIMINANT

We shall use the Generalized Spectral Mapping Theorem of Section 7 to
prove two results on discriminants that are well-known for algebras of finite
dimension over fields (see e.g. [B2], §5, Corollaire 6 and Corollaire 7, p. 38).
Note that k& below, as above, denotes a commutative ring with unity.
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Let P be a monic polynomial in k[x] of degree n. The discriminant of P
is the element (—1)“*—1/2Res(P’,P) of k, where P’ is the derivative of P.

Let Kk C k' = k[\,...,\,] be the canonical extension constructed in
Example 6.2. We write A(P) = Hi>j(/\i — );). The formula for the resultant
of Corollary 7.2 gives the equations

(__1)11(71—1)/2 R@S(P/,P) — (_1)71(71——1)/2 H()\I . )\]) — H()\z . /\])2 — A(P)z,
oy i

hence A(P)? is the discriminant of P.

8.1. PROPOSITION. Let N be a norm of degree n on a k-algebra A,
and let o be an element of A. Denote by P, the characteristic polynomial
of « with respect to N. Then we have the equations in k :

det TrV (0?19), gm0, no1 = APo)* = (= 1)@ D2N (Pl ().

Proof. By (7.2.1) we have the equation N;(P,(c)) = Res(P.,, P,). Hence
the second equation holds.

The rest of the proof is classical, as given in [B2]. We note that Hi> j()\,-—)\j)
is the determinant of the matrix (\Y) with row number i = 1,...,n and column
number ¢ = 0,...,n — 1. When this matrix is multiplied from the left by
its transpose the entry in position p,q is equal to the sum Y7 M7, and
consequently equal to Tr"(a?*9). Hence we have proved the Proposition. [

8.2. PROPOSITION. Let N be a norm on a k-algebra A, and let o be an
element in A. In the ring of power series in the variable t with coefficients
in k we have the equation :

(G LN (1 — 1) 1= ENyn(1 — 10) /Nygy (1 — ta) = = Y Tr" (/).
j=0

Proof. Let n be the degree of the norm N. We have

n

Nign(1 —ta) = [ J(1 = M)
i=1

and consequently we have equations

n xO n

(dlog /dNia(l —to) = Y =N/(L—tA) = =" S~ N*!d,

i=1 j=0 i=I
It follows from Corollary 7.2 that Tr¥(a!) = S>0_ M for I =1,2,.... The
formula of the Proposition follows. [
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We note that, when k contains the rational numbers and N is a norm
of degree n on a k-algebra A, we have that the characteristic polynomial
Nin(t — o) of an element o of A is determined by the elements ey (o) for
j=1,...,n.
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