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THE SPECTRAL MAPPING THEOREM,
NORMS ON RINGS, AND RESULTANTS

by D. LAKSOV, L. SVENSSON and A. THORUP

ABSTRACT. We give a short, simple and self-contained proof of the Spectral
Mapping Theorem for matrices with entries in an arbitrary commutative ring. The
result is placed in the wider framework of norms on algebras. It is shown that the
Spectral Mapping Theorem follows from a uniqueness result for norms on polynomial
rings in one variable. The results are used to generalize classical formulas for the
resultant of polynomials.

1. INTRODUCTION

It is a well-known and useful result in spectral theory of complex
finite dimensional vector spaces that if the characteristic polynomial of an
n x n-matrix M splits as Py(f) = det(z, — M) = [[_,(t — X)) then, for
any polynomial F(x), we have that det(:f, — F(M)) = []_,(t — F(\)).
We call this result the Spectral Mapping Theorem, because it is similar
to the Spectral Mapping Theorem for Banach algebras. Many proofs of
the result for complex finite dimensional vector spaces are known, most of
them based upon transforming the matrix into triangular form (see [B2], §5,
Proposition 10, p.36), or using the Jordan canonical form for the matrix (see
[L], Chapter XIV, §3, Theorem 3.10, p.566). The Theorem and its proofs
are easily generalized to arbitrary fields, and therefore to integral domains. In
our work on parameter spaces in algebraic geometry ([L-S], [S1], [S2]) we
needed a generalization of the Spectral Mapping Theorem to matrices with
entries in arbitrary commutative rings with unity. The only reference we could
find to such a generalization was [L], Chapter XIV, §3, Theorem 3.10, p. 566,
where a proof is deduced from the theory of integral ring extensions. The
difficult part of the proof is dismissed with the phrase ‘“This is obvious to
the reader who read the chapter on integral ring extensions, and the reader
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who has not can forget about this part of the theorem”. It is hard to decide
whether these assertions about a general reader are correct. There is little
evidence of the second claim. For the first there is more evidence. Indeed,
it is true that, in order to reduce to the case when the ring is an integral
domain, it is not hard to see that it suffices to prove the following assertion :
Let M be the generic matrix over Q, and let L be the splitting field, over
Q(M), of the characteristic polynomial of M. Then L has degree n! over
Q(M). The latter assertion follows, using standard methods, from the theory
of integral Galois extensions (see e.g. [L], Chapter VII, §2, Proposition 2.5,
p.342). Apparently the methods are foreign to the problem, and the results
on integral ring extensions that are used are more difficult than the result that
we want to prove. In this article we follow a more natural path, resulting in a
simple, self contained, and short proof of the Spectral Mapping Theorem. As
a consequence we get a better understanding of the result and we can place
it into a more general framework.

The proof suggests that the Spectral Mapping Theorem should be con-
sidered within the framework of norms on algebras. Our method leads to
a uniqueness result for norms on the polynomial ring in one variable from
which a generalized Spectral Mapping Theorem follows. Applied to the most
common norms on the polynomial ring in one variable the uniqueness gives
generalizations of classical formulas for the resultant of polynomials.

2. THE SPECTRAL MAPPING THEOREM

Let M be an n x n-matrix with entries in a commutative ring k with unity.
Assume that the characteristic polynomial Py () = det(tl,, — M) of M splits
completely in k, that is Py () = [[_(t — ) with \; € k for i=1,...,n.

The Spectral Mapping Theorem states that, for every polynomial F(x)
in the variable x with coefficients in an arbitrary commutative ring R that
contains k as a subring, we have

2.1 det F(M) = H FO\)
i=1

in R. In particular, when f(x) is a polynomial with coefficients in k and we
use (2.1) for the ring k[¢] and the polynomial F(x) =t — f(x), we obtain in
k(1] :

Pran(®) = det(tl, — f(M) = det FM) = | [FOw = [ [ — 0w
i=1 i=1
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3. A REDUCTION

To prove the Spectral Mapping Theorem it suffices to verify that it holds
for the polynomial ring k[fo,...,#,] in variables fo,...,%, Over k, and for
the polynomial F(x) =t + fix + --- + t,,x™. This is because any polynomial
G(x) = by + bix+ - - - + b,x™ with coefficients in a ring R containing k as a
subring is the image of F(x) by the map g: k[f,. .. ,tn][x] — R[x] defined
by g(a) = a for a € k, by g(#;) = b; for i =0,...,m, and by g(x) = x. If
we can prove the equality det F(M) = []._, F(\) in k[to,...,%.] we obtain
that det G(M) = g(det F(M)) = H?:l g(F(\y)) = Hle G(\) in R.

4. 'THE PROOF

Clearly (2.1) holds when F is a constant a where it simply states that
det(al,) = a”. We shall prove (2.1) for polynomials F of degree m > 0 by
induction on m.

We first note that if F(x) has a root A in R, so that F(x) = (x — \)G(x)
in R[x], then (2.1) holds for F(x). Indeed, G(x) is of degree m — 1 so
it follows from the induction hypothesis that det G(M) = []._, G(\;). Since
FM) = (M — \,)G(M) we obtain:

det F(M) = det(M — \I,,)det G(M)
=i =M ]]6on =] =600 =] FO.
i=1 =1 i=1 i=1

As we saw in Section 3 it suffices to prove the result for the ring
Q = klty,...,tn] and the polynomial F(x) = fg + tix + --- + £,,x™. Let x
and y be independent variables over the ring Q. The polynomial F(x)— F(y)
in x with coefficients in Q[y] has the root x = y. Hence, as we just observed,
(2.1) holds for the polynomial F(x) — F(y). We obtain the equation:

(4.1) det(F(M) — F(y)I,,) = H(F (A) — F(y)
i=1
in Olyl.

The equation (2.1) 1s a consequence of (4.1). To see this we observe
that F(y) in Q[y] is transcendent over Q, that is the element F(y) in Q[y]
does not satisfy a polynomial relation ag + a\F(y) + - - + a;F(y)' = 0 with
coefficients a; in Q and a; # 0, because the coefficient a,t,’n of the highest
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power y™

of y that appears in the relation is non-zero. It follows that we can
define a homomorphism of rings A: Q[F(y)] — Q by h(a) = a for a € Q,
and A(F(y)) = 0. We apply the map A to both sides of (4.1) and obtain the

equality (2.1).

5. NORMS ON ALGEBRAS

The only properties of determinants that we used in the proof of the Spectral
Mapping Theorem is that they are multiplicative, functorial and homogeneous.
It 1s therefore natural to place the proof into the more general framework of
norms on algebras. The advantage of this point of view is that we obtain
a deeper understanding of the Spectral Mapping Theorem, and we obtain a
natural connection with resultants of polynomials.

A norm N of degree n on a, not necessarily commutative, k-algebra A
is a family of maps Ng: R ®, A — R, one for every commutative k-algebra
R, that satisfies the conditions:

(1) Nr(a® 1) =a" for all elements a in R.
(2) Ng(uv) = Nr(u)Ng(v) for all elements u and v of RQ; A.

(3) For every homomorphism ¢: R — § of commutative k-algebras we have
¢@Ng = Ns(p ® ida).

A norm on an algebra may be described as a multiplicative homogeneous
polynomial law (see Roby [R], or [B1], §9, Définition 3, p.52).

For any map B — A of k-algebras the norm N on A restricts to a norm
on B of degree n. Moreover, for every homomorphism of commutative rings
k — k' the norm N on A induces a norm of degree n on the k’-algebra
K @i A.

Let N be a norm of degree n on a k-algebra A. Denote by k[t] the
k-algebra of polynomials in the variable ¢ with coefficients in k. For every
element « in A the polynomial in k[f] :

Po(t) = PY(H) = Ny (t — )

is called the characteristic polynomial of «. The trace Tr¥(@) of « is the
element in k such that — Tr"(a) is the coefficient of #*~! in P, (7).

We note that P,(0) = (—1)"Ni ().
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5.1. LEMMA. Let N be a norm of degree n on a k-algebra A. For each
element o of A the characteristic polynomial ng(t) = Niyg(t — @) is monic
of degree n.

Moreover, the trace TN is a k-linear map A — k.

Proof. Let s,t,u,v be independent variables over the ring k. For
each element 3 in A the norm Ny, (f — s — fu) is a polynomial in
k[s,t,u]. Since N is of degree n we have that Ny su,0(v — Qus — Bou) =
V" N s,0.u1(t — s — Bu) . It follows that Ny s, (f — s — (Bu) is homogeneous of
degree n in k[s,t, u]. In particular the coefficient of "1 is of the form as-+bu
with a and b in k. By evaluating the polynomial Ny, (—as—Fu) at s =0,
u = 0, it follows that the coefficient to " is equal to 1. Hence Ny(t— ) is
a monic polynomial of degree n, and a = — TrV(«). Similarly, b = — TN (5).
Hence we have that Tr'V(as + Bu) = —(as + bu) = Tr¥(a)s + N (5)t.
Specializing s and ¢ to any pair of elements of k the second part of the
Lemma follows. [

5.2. EXAMPLE. Let M be a free module of rank n over k, or more
generally a projective k-module of constant rank 7n. Then the determinant
defines a norm of degree n on Endi(M).

Let A be a k-algebra which is free of rank n as a k-module. Left
multiplication by elements of A define an injection A — Endi(A) of
k-algebras. By restriction we obtain a norm of degree n on A.

6. NORMS AND RESULTANTS

Let F(x) =fo+ - +fux™ and P(x) =pg+ -+ + p,x" be polynomials of
degree m, respectively n in the k-algebra k[x] of polynomials in the variable x
with coefficients in k. The resultant Res(F,P) of F and P is the determinant
of the (m+n) x (m+n)-matrix D(F, P) whose columns are the coefficients of
the polynomials F,xF,...,x" " 'F P ,xP,...,xX"1P. Note that the definition
is asymmetric in F and P in the sense that Res(F,P) = (—1)" Res(P, F).

When P is monic the resultant is equal to the determinant of the endo-
morphism induced by multiplication by F on the free k-module k[x]/(P(x))
of rank n. To see this we note that for i = 0,...,n — 1 we can write
x'F = Q;P+R; in k[x], where Q;(x) and R;(x) are of degrees at most m — 1,
respectively n — 1. It follows that the determinant of D(F,P) is equal to the
determinant of the (m 4 n) x (m + n)-matrix B(F, P) whose columns are the
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coefficients of the polynomials Rg,...,R,_i,P,xP,...,x" 'P. We see that
the n x n-block C(F,P) in the upper left corner of B(F,P) is the matrix
C(F, P) of the map induced by multiplication by F on k[x]/(P(x)), and the
m X m-block in the lower right corner is upper triangular with 1°s on the
diagonal. Moreover, the entries of C(F,P) are the only non-zero entries in
the first n columns of B(F,P). It follows that Res(F, P) = det C(F, P), as we
claimed.

6.1. EXAMPLE. When P is a monic polynomial we saw in Example 5.2
that the k-algebra k[x]/(P(x)) which is free of rank n as a k-module has
a canonical norm. Via the canonical map k[x] — k[x]/(P(x)) we obtain a
canonical norm Ny on k[x]. The above interpretation of the resultant can then
be written as

(6.1.1) (Np)r(F) = Res(F, P)

for all commutative k-algebras R and all polynomials F(x) in R[x] = RQk[x].
By an easy computation of the determinant defining Res(t — x, P), we obtain
that the characteristic polynomial of x with respect to N is

PY (1) = P@) .

6.2. EXAMPLE. We shall introduce a second important norm on kf[x].
Let P(x) be a monic polynomial of degree n in the k-algebra k[x]. There

is a canonical ring extension k C k' = k[A1,...,\,] such that P(x) splits
as P(x) = []/_;(x — ) in k’[x]. The extension is obtained by induction
starting with k = ko and Py(x) = P(x), and constructing k; = k[A1, ..., A\

and P;(x) € k[A\i,..., \]lx] from k;_y and P;,_;, for i = 1,2,...,n, by
ki = ki—i[x]/(Pi—1(x)) = ki—1[\;], where A; is the class of x, and by
Pi(x) = Pi_1(x)/(x — X\;)). We note that k' is a free k-module of rank n!.
The algebra. k/:is sometimes called the wuniversal decomposition algebra for
P (see [B1],86, p.68).

For every commutative k-algebra R and every polynomial G in R[x] =
R ® k[x] we have that H:;l G(\;) 1s symmetric in Ay, ..., \,, and conse-
quently lies in the image of the inclusion R C k' ®, R. We obtain a map
(ND)r: R @ k[x] — R defined by (Ny)r(G) = [[i_; G(\). In this way we
obtain a norm N, of degree n on k[x] and the characteristic polynomial of
x with respect to the norm Ny is

N//

Pr () =[] -2 =P@.

i=1
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7. UNIQUENESS OF NORMS AND THE SPECTRAL MAPPING THEOREM

We are now ready to prove the uniqueness of norms on the polynomial
ring k[x] that we alluded to in the introduction. When we apply uniqueness to
the norms N5 and Ny of Examples 6.1 and 6.2 we obtain the generalization
of the Spectral Mapping Theorem for norms of rings also mentioned in the
introduction. We also obtain some generalizations to rings of the classical
interpretations of the resultant.

The proof of the uniqueness result is a slight variation of the proof of the
Spectral Mapping Theorem given in Section 4.
The first formula in (7.2.1) below, when the norm is the determinant on

the algebra of n x n matrices over an arbitrary ring k, was proved by McCoy
[M], Theorem 56, p.172.

7.1. THEOREM. A norm N on the k-algebra k|x] of polynomials in
the variable x is uniquely determined by the characteristic polynomial
PY(f) = Nyt — x) of x with respect to N.

Proof. Let N’ be a second norm on k[x] such that PY(r) = PN ().
Then N’ and N are of the same degree n. The Theorem asserts that for any
commutative k-algebra R and every polynomial F' in R[x] = R ® k[x] we
have

(7.1.1) Nr(F(x)) = Ng(F(x))

We prove (7.1.1) by induction on the degree m of F(x). Clearly (7.1.1) holds
when F is a constant. Assume that the degree m of F is positive and that
the equality Nz(G(x)) = Ni(G(x)) holds for all commutative : k-algebras R
and all polynomials G(x) in R[x] of degree m — 1. Let ¢ be an independent
variable over R[x]. If the equality (7.1.1) holds for the polynomial #x™ + F(x)
in R[t][x] it holds for F(x), as we see by specializing ¢ to 0. Consequently
we may assume that the coefficient of x™ in F(x) is a non-zero divisor in
R[x]. Then the canonical map R — R[x]/(F(x)) is an injection. Consequently
we may also assume that R contains a root p of F(x). Then we have that
F(x) = F(x) = F(u) = (x—p)G(x) in R[x] where G(x) has degree m — 1. Both
sides of the equality (7.1.1) are multiplicative in F(x), and the equality holds
for G(x) by the induction assumption. It also holds for x — u as we see by
specializing ¢ to p in the equality Nig(r —x) = PY (1) = PY' (1) = Njy, (1 — x).
Hence we have proved the Theorem. []
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7.2. COROLLARY (The Generalized Spectral Mapping Theorem). Let N
be a norm of degree n on a k-algebra A, and let o be an element of A.
For all polynomials F in k[x] we have the equations

(7.2.1) Ni(F() = Res(F, Ph) = | [ FOw)

i=1

in k, where A,...,\, are elements of any extension R O k such that
PNt =TT,(t — X)) in R[x].
In particular we have that Tr™(F(q)) = S FO).

Proof. Let P = PY be the characteristic polynomial of o with respect
to N. The norm N restricts, via the canonical k-algebra homomorphism
k[x] — A which sends x to «, to a norm on k[x], and the characteristic
polynomial of x with respect to this norm is P. On k[x] we have the norm N,
and the norms Nj and Ny of the Examples 6.1 and 6.2, and the characteristic
polynomial of x with respect to all three norms is P. It follows from the
Theorem that these three norms are equal. The equations (7.2.1) express the
equality of the norms applied to the polynomial F(x). Finally the expression
for the trace follows by considering the coefficient of "~ ! of the left and

right side of (7.2.1) applied to the polynomial ¢t — F(x) in k[f][x]. [

The formula Res(F, P) = H?zl F()\;) of Corollary (7.2) is the generalization
to rings of the well-known interpretation of resultants by the roots of the
monic polynomial P in the case when k is a field. If F is also monic and
F = H}"zl(x — ;) in R[x] we have

Res(F,P) = [[FOw =[] — )
i=1

i=1 j=1

which is often used as a definition of the resultant in the case k is an
algebraically closed field.

8. THE DISCRIMINANT

We shall use the Generalized Spectral Mapping Theorem of Section 7 to
prove two results on discriminants that are well-known for algebras of finite
dimension over fields (see e.g. [B2], §5, Corollaire 6 and Corollaire 7, p. 38).
Note that k& below, as above, denotes a commutative ring with unity.
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Let P be a monic polynomial in k[x] of degree n. The discriminant of P
is the element (—1)“*—1/2Res(P’,P) of k, where P’ is the derivative of P.

Let Kk C k' = k[\,...,\,] be the canonical extension constructed in
Example 6.2. We write A(P) = Hi>j(/\i — );). The formula for the resultant
of Corollary 7.2 gives the equations

(__1)11(71—1)/2 R@S(P/,P) — (_1)71(71——1)/2 H()\I . )\]) — H()\z . /\])2 — A(P)z,
oy i

hence A(P)? is the discriminant of P.

8.1. PROPOSITION. Let N be a norm of degree n on a k-algebra A,
and let o be an element of A. Denote by P, the characteristic polynomial
of « with respect to N. Then we have the equations in k :

det TrV (0?19), gm0, no1 = APo)* = (= 1)@ D2N (Pl ().

Proof. By (7.2.1) we have the equation N;(P,(c)) = Res(P.,, P,). Hence
the second equation holds.

The rest of the proof is classical, as given in [B2]. We note that Hi> j()\,-—)\j)
is the determinant of the matrix (\Y) with row number i = 1,...,n and column
number ¢ = 0,...,n — 1. When this matrix is multiplied from the left by
its transpose the entry in position p,q is equal to the sum Y7 M7, and
consequently equal to Tr"(a?*9). Hence we have proved the Proposition. [

8.2. PROPOSITION. Let N be a norm on a k-algebra A, and let o be an
element in A. In the ring of power series in the variable t with coefficients
in k we have the equation :

(G LN (1 — 1) 1= ENyn(1 — 10) /Nygy (1 — ta) = = Y Tr" (/).
j=0

Proof. Let n be the degree of the norm N. We have

n

Nign(1 —ta) = [ J(1 = M)
i=1

and consequently we have equations

n xO n

(dlog /dNia(l —to) = Y =N/(L—tA) = =" S~ N*!d,

i=1 j=0 i=I
It follows from Corollary 7.2 that Tr¥(a!) = S>0_ M for I =1,2,.... The
formula of the Proposition follows. [
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We note that, when k contains the rational numbers and N is a norm
of degree n on a k-algebra A, we have that the characteristic polynomial
Nin(t — o) of an element o of A is determined by the elements ey (o) for
j=1,...,n.
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