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346 S.D. CHATTERJI

§5. Appendix

Here we outline a simple proof of the Lp -isomorphism theorem stated

in §2; the proof uses the notion of type and cotype of Banach spaces and

follows [C].

Definition. A Banach space E is of type p (1 < p < 2) if there is

a finite positive number Cp such that for all choices of x\ xn in E,
n 1,2,... we have
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where stands for the sum of the 2n quantities obtained by letting
each £j taking the values +1 or — 1. E is said to have exact type p if it is

of type p but not of type p > p.
A Banach space E is of cotype q (2 < q < oo) if there is a finite positive

number cq such that for all choices of x\ ,...,xn in E, n 1,2,... we
have
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E is said to have exact cotype q if it is of cotype q but not of cotype q < q.

It is obvious that exact type or cotype is an isomorphism invariant. It
can be shown that for any measure space (X, Z, p) giving rise to infinite
dimensional Lp(p)-spaces we have the following:

• Lp(p) has exact type p if 1 < p < 2, exact type 2 if 2 < p < oo and

exact type 1 if p — oo ;

• LP{p) has exact cotype 2 if 1 < p < 2, exact cotype p if 2 < p < oo

ßftd exact cotype oo if p oo.

All this and more is completely proved in [C] ; a reference for the general

theory of types and cotypes is [DJT].

Suppose now that Lp{p) and Lq(u) are infinite dimensional and isomorphic
where 1 <p, q < oo, (X, ^,/i), being any two measure spaces;

we shall prove that p q. Without loss of generality, we may suppose that

if p zfz q then p < q\ this would lead to a contradiction as shown below.
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(i) If 1 < p < q< 2 then

exact type of Lp(p)p < exact type of LL,(v) —

which excludes any isomorphism between LP{p), Lq(y).

(ii) If 1 < p < 2, 2 < q <oothen
exact type of Lp(p) =p <exacttype of Lq(v) 2,

which excludes any isomorphism between Lp(jj), Lq(v).

(iii) If 2 < p < q<oothen 1 < q' << 2 ; if were

isomorphic then their duals Lp (//). (v) would be isomorphic, which

is impossible in view of (i).

(iv) If 1 < p < oo, q oo then Lp(p) has exact type equal to min(p, 2) > 1

whereas L°°0) has exact type 1 ; thus If(ß) is not isomorphic to L°° (V)

(a fact which is obvious on the grounds of reflexivity as well).

(v) Finally, let p 1, q oo ; then is not isomorphic to L°°0)
since the exact cotype of L1^) is 2 and the exact cotype of L°°(v)
is oo.

This completes the proof of the LP -isomorphism theorem.

A proof that no infinite dimensional Ll(/i) can be isomorphic to any Co(Y)

or CiY) (Y any locally compact Hausdorff space) can be based on the same

ideas as (v) above. The exact cotype of is 2 whereas the exact cotype
of any infinite dimensional Co(F) or C(Y) is oo (exactly as in the case of
L°°(/i)). This excludes the possibility of any isomorphism between Ll(ß) and

C0(T) or C(Y).

Remark. The Lp -isomorphism theorem seems to be known to various

specialists; however, I know of no explicit formulation or proof of it in
complete generality except for that in [C].
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