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6. Questions ouvertes

1. Pour autant que nous le sachions, la non-inclusion

L°°(R2) £ W"1 (w'tL^R2))),

ne se ramène pas, comme c'est le cas pour Ll, à des observations élémentaires

sur les plongements de Sobolev.

2. Le théorème 4 laisse ouvert le problème d'une description explicite

simple des espaces fonctionnels et VP_1(W1(LI(R,?))).

3. Dans le même ordre d'idée, on vérifie facilement que les EBD

Em Wm(W~m(L°°(Rn))) (m > 0)

forment une suite croissante de sous-espaces de bmo(Rn). Cette suite est-elle

strictement croissante Peut-on décrire simplement le sous-espace (Jm>o

Des questions homologues se posent pour la suite décroissante

W-fn(Wm(L](Rn)) (m > 0)

de sous-espaces de Ll(R").

4. On peut conjecturer une réciproque de la proposition 5 : si E possède
la propriété de Mitiagin-Ornstein, alors E Wl(W~l(E)) ; cela reviendrait
à dire que est le plus petit EBD incluant E et possédant la

propriété de Mitiagin-Ornstein.

5. Peut-on trouver une «bonne» échelle de régularité d'origine L1 Pour
préciser la question, désignons par E la classe de tous les EBD de V(Rn).
Existe-t-il une famille (Sm)mez d'applications de E dans S telle que:

• pour tout E G £, (Sm(E))mez est une échelle de régularité d'origine E,
• sr+k(ü(ß»)) Sm(Sk(Ll(Rn))) pour tout (m,k) G Z2
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