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4.2 Preuve du théorème 1

Nous procéderons en trois étapes.

1. Les espaces L*(R2) et L°°(R2) ne possèdent pas la propriété de

Mitiagin-Ornstein (voir [5] et [6], ainsi que l'article de Boman [2]). D'après

la proposition 5, cela suffit pour établir que L^R2) et L°°(R2) sont des sous-

espaces propres de ^(W^L^R2))) et WW_1(£°°(R2))) respectivement.

2. Pour vérifier la propriété (i) en dimension n > 3, on considère

et v une fonction non nulle appartenant à V(Rn 2). On voit aisément que la

fonction f u®v vérifie

La propriété (iii) se prouve de la même façon.

3. On applique enfin le théorème 2 et la proposition 1, pour en déduire

(ii) et (iv).

4.3 Contre-exemples explicites

Nous allons voir qu'il est possible de produire des contre-exemples pour
les non-inclusions (i) et (ii) sans invoquer le théorème de Mitiagin. Il est clair
qu'il suffit de travailler en dimension 2.

u G W/1(VÉ_1(Lco(R2))) \L°°(R2)

/ G Wl(W-\L°°(Rn))) \L°°(R").

Soit

u(x, y) 2x — x 1og(x2 + y2) — 2y arctan

On a u G Lc et

du oo— (x,y) - log(x2 + y1) ;

si on pose /(t, y) —p(x, y) log(x2 +y2), il vient

de sorte que / appartient à W l(L°°(R2)). Soient

u(x, y) —2 arctan (D1 W(-X' ^ ~~gbcl0g^2 + y2^
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