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<Tf7 g> = A e_t<f7 T—tQ) dt;

cela nous donne E' = W—"(W™(E")); on applique alors le théoréme 2 et la
proposition 1 pour obtenir E = W"(W~™(E)) et E' = W™(W~"™(E")). Il nous
reste a vérifier la propriété (5). Pour m > k, on applique la premiére partie
de la preuve a I’espace W™ %(E), ainsi que la proposition 1; il vient

W"HE) = WE (WEWHE))) = WHW™(E));
par ailleurs:
W HE) = W (WKW HE))) = W"(WHE)).
Le cas m < k se traite de maniere analogue. Le méme raisonnement s’applique

a E'.

REMARQUE. Le théoreme 3 se retrouve aussi dans le cadre des Cy-groupes
([1], théoréme 3.3.23).

4. RESULTATS NEGATIFS EN DIMENSIONS SUPERIEURES

4.1 LA PROPRIETE DE MITIAGIN-ORNSTEIN

DEFINITION 3.  Soit £ un EBD dans D'(R?). On dit que E posséde
la propriété de Mitiagin-Ornstein si, pour toute distribution f, les conditions
O € E (j=1,2; k=0,1,2) impliquent 9,0,f € E.

PROPOSITION 5. Si E est un EBD dans D'(R?), alors W'(E) posséde la
propriété de Mitiagin-Ornstein.

Preuve. Supposons 9ff € W'(E), pour j = 1,2 et k = 0,1,2. On a
en particulier ,f € WY'(E), d’ot 8,0,f € E. La condition 87f € WI(E)
implique

B1(0100f) = (D?f) € E;

on obtient de méme 0,(0,0,f) € E. Ainsi 8,0,f appartient 3 W!(E).




ECHELLES DE SOBOLEV D’ORIGINE ARBITRAIRE 333

4.2 PREUVE DU THEOREME 1
Nous procéderons en trois étapes.

1. Les espaces L!(R?) et L®(R?) ne possédent pas la propricte de
Mitiagin-Ornstein (voir [5] et [6], ainsi que D’article de Boman [2]). D’apres
la proposition 3, cela suffit pour établir que L'(R?) et L>(R?) sont des sous-
espaces propres de W' (W~'(L(R?))) et W'(W~!(L>(R?))) respectivement.

2. Pour vérifier la propriété (i) en dimension n > 3, on considere
uwe WHWHL=®R))) \ LZ(R?)

et v une fonction non nulle appartenant 3 D(R"~2). On voit aisément que la
fonction f = u ® v vérifie

FeW WTIZZR)\ LZRY).

La propriété (iii) se prouve de la méme facon.

3. On applique enfin le théoréme 2 et la proposition 1, pour en déduire
(ii) et (iv).

4.3 CONTRE-EXEMPLES EXPLICITES

Nous allons voir qu’il est possible de produire des contre-exemples pour
les non-inclusions (1) et (i1) sans invoquer le théoreme de Mitiagin. Il est clair
qu’il suffit de travailler en dimension 2.

Soit
u(x,y) = 2x — xlog(x2 + yz) — 2y arctan(f> :
y

Onauecl et

)

- (,9) = —log( +57);
si on pose f(x,y) = —p(x,y)log(x* + y%), il vient

Fe Oup) u@
Ox Ox’

de sorte que f appartient 3 W—1(L>°(R?)). Soient

0
v(x,y) = —2arctan (ﬁ) L winy) = —8—Z<x,y> log(? +y?).
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Les fonctions v et w appartiennent a L* et on a

g = A pv) +w—v-8—p
Ox Oy Oy’

0
d’ou (‘9_]; € WL (R?)). Un calcul analogue montre que gf— appartient
Y
a WL(L>*°(R?)). Finalement f appartient 3 W' (W~1(L*°(R?))) mais non 2
L>®(R?).

Soit g une fonction intégrable positive telle que
fg = +oo,
R2

par exemple g(x,y) = P, y) . Si ’on avait g €¢ W=I(WI(LY)),

(% +y?) log* (& +y?)
la proposition 4 et le théoreme 2 nous donneraient

(g, vk * )] < |lx *f“wl(w—l(Loo)) Hg“W—I(Wl(Ll))’
d’ou
/Q(SDk ) < fllwiw-1eon | 9llw=10m 1y 5

puisque ¢ x f tend vers f presque partout, le lemme de Fatou nous
conduirait a:

/fg<+oo,

ce qui contredit le choix de g.

4.4 1ES PLONGEMENTS DE SOBOLEV SOUS-JACENTS

La non-inclusion L'(R*) ¢ W~ (W'(L'(R?))) peut s’interpréter de maniere
fort élémentaire en la factorisant a travers des plongements de Sobolev. On
commence par observer que '

(7) WL (R?) C L*(R?)

(ceci parce que 1 = 1 — 3 ; voir par exemple [7], chapitre 5, théoréme 2).

On dispose en fait d’un plongement de Sobolev un peu plus général que (7),

a savoir:
| BV(R?) c L*(R%);

BV(R?) est I’espace des fonctions dont les dérivées premiéres sont des mesures

bornées sur R?. Dés lors I’inclusion

L'R» c W (W' (RY))
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impliquerait a fortiori
L'R» c W I(L*(R?)),
ou encore, en passant aux duaux:
W' (L*(R?) € LZ(RY);

or W!(L*(R?)) est I’espace de Sobolev critique, qui s’injecte dans BMO(R?)
et non dans L®(R?).

5. POUR ALLER PLUS LOIN

Depuis les travaux de Stein et Weiss, ’espace de Hardy H I(R™) et son
dual BMO(R") sont considérés comme des substituts naturels de L!'(R") et
L*(R™"). BMO(R") n’est pas, a proprement parler, un EBD puisque, pour sa
norme naturelle, c’est un espace de Banach de fonctions modulo les constantes.
Aussi allons-nous considérer les versions locales de ces espaces fonctionnels,
introduites par D. Goldberg [4] sous les notations A!(R") et bmo(R") et
rattachés depuis a la grande famille des espaces de Lizorkin-Triebel; on
a en effet A'(R") = F),(R") et bmo(R") = F°_,(R") (voir [8]). Puisque les
opérateurs pseudo-différentiels d’ordre zéro sont bornés sur les F}_, on obtient
WM™E) = (I — A)~"*(E) pour E = h'(R") et E = bmo(R"), de sorte que
les échelles de Sobolev ayant ces deux espaces pour origine sont invariantes.
Cela va nous conduire a une version précisée du théoréme 1:

THEOREME 4. Pour n>1, on a:

L*R") c W' (W™H(L™(R")) C bmo(R"),
hl(Rn) - W——l (WI(LI(RM))) C LI(RH),
et ces quatre inclusions sont strictes.

Preuve. Compte tenu des théoremes 1 et 2, il suffira d’établir que h'(R")
est un sous-espace propre de W' (W!'(L!(R")). Quelques rappels sur 4! seront
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