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poo
C Tf,g)=/ e;J0

cela nous donne Ef W~m(Wm(Ef)) ; on applique alors le théorème 2 et la

proposition 1 pour obtenir E Wm(W~m(E)) et E! Wm(W-m{E')). Il nous
reste à vérifier la propriété (5). Pour m > k, on applique la première partie
de la preuve à l'espace Wm~k(E), ainsi que la proposition 1; il vient

Wm~k(E) W~k (Wk(Wm~k(E))) W~k{Wm(E)) ;

par ailleurs:

Wm~k(E) (Wk(W~k(E))) Wm(W~k(E)).

Le cas m < k se traite de manière analogue. Le même raisonnement s'applique
à E'.

Remarque. Le théorème 3 se retrouve aussi dans le cadre des Co -groupes
([1], théorème 3.3.23).

4. Résultats négatifs en dimensions supérieures

4.1 La propriété de Mitiagin-Ornstein

Définition 3. Soit E un EBD dans V(R2). On dit que E possède

la propriété de Mitiagin-Ornstein si, pour toute distribution /, les conditions

djf e E j 1,2 ; k — 0,1,2) impliquent d\Ô2f G E.

PROPOSITION 5. Si E est un EBD dans Uf(R2), alors Wl(E) possède la

propriété de Mitiagin-Ornstein.

Preuve. Supposons dkf G Wl(E), pour j 1,2 et k 0,1,2. On a

en particulier 82f G Wl(E), d'où 8182f G E. La condition ôjf/ G Wl{E)
implique

3i(ôiÔ2/) 02(ô?/)e£;

on obtient de même ô2(ôiô2j0 £• Ainsi ôi<92/ appartient à WUE).
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4.2 Preuve du théorème 1

Nous procéderons en trois étapes.

1. Les espaces L*(R2) et L°°(R2) ne possèdent pas la propriété de

Mitiagin-Ornstein (voir [5] et [6], ainsi que l'article de Boman [2]). D'après

la proposition 5, cela suffit pour établir que L^R2) et L°°(R2) sont des sous-

espaces propres de ^(W^L^R2))) et WW_1(£°°(R2))) respectivement.

2. Pour vérifier la propriété (i) en dimension n > 3, on considère

et v une fonction non nulle appartenant à V(Rn 2). On voit aisément que la

fonction f u®v vérifie

La propriété (iii) se prouve de la même façon.

3. On applique enfin le théorème 2 et la proposition 1, pour en déduire

(ii) et (iv).

4.3 Contre-exemples explicites

Nous allons voir qu'il est possible de produire des contre-exemples pour
les non-inclusions (i) et (ii) sans invoquer le théorème de Mitiagin. Il est clair
qu'il suffit de travailler en dimension 2.

u G W/1(VÉ_1(Lco(R2))) \L°°(R2)

/ G Wl(W-\L°°(Rn))) \L°°(R").

Soit

u(x, y) 2x — x 1og(x2 + y2) — 2y arctan

On a u G Lc et

du oo— (x,y) - log(x2 + y1) ;

si on pose /(t, y) —p(x, y) log(x2 +y2), il vient

de sorte que / appartient à W l(L°°(R2)). Soient

u(x, y) —2 arctan (D1 W(-X' ^ ~~gbcl0g^2 + y2^
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Les fonctions v et w appartiennent à L°° et on a

df d(pv) dp
ai ^T + w~vWy-

d'où — G W_1(L°°(R2)). Un calcul analogue montre que —- appartient
ox oy

à W-1(L°°(R2)). Finalement / appartient à W^W-1^00^2))) mais non à

L°°(R2).
Soit g une fonction intégrable positive telle que

fg +00,
JR2

par exemple g(x,y) — —. Si l'on avait g G
(xl + y1) log (x2 + y1)

la proposition 4 et le théorème 2 nous donneraient

I <0, <?**/}[ < \\<pk*f\\ W^W-^L00)) NI
d'où

Jgivk *f) < ll/llw1^-1^00))!^!!^-1^1^1))*

puisque <£* * / tend vers / presque partout, le lemme de Fatou nous
conduirait à:

J fg <+00,

ce qui contredit le choix de g.

4.4 Les plongements de Sobolev sous-jacents

La non-inclusion Z3(R2) <f_ W~l (W^L^R2))) peut s'interpréter de manière

fort élémentaire en la factorisant à travers des plongements de Sobolev. On

commence par observer que

(7) Wl (Ll(R2))C L2(R2)

(ceci parce que — j voir par exemple [7], chapitre 5, théorème 2).

On dispose en fait d'un plongement de Sobolev un peu plus général que (7),
à savoir: BV(R2)C L2(R2) ;

BV(R2) est l'espace des fonctions dont les dérivées premières sont des mesures
bornées sur R2. Dès lors l'inclusion

L'(R2) C W~1(w\Ll(R2)))
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impliquerait a fortiori

Ll(R2) C W~l(L2(R2))

ou encore, en passant aux duaux :

W1 (L2(R2)) C L°°(R2) ;

or Wl (L2(R2)) est l'espace de Sobolev critique, qui s'injecte dans BMO(R2)

et non dans L°°(R2).

5. Pour aller plus loin

Depuis les travaux de Stein et Weiss, l'espace de Hardy Hl(Rn) et son

dual BMO{R") sont considérés comme des substituts naturels de Ll(Rn) et

L°°(R77). BMO(R") n'est pas, à proprement parler, un EBD puisque, pour sa

norme naturelle, c'est un espace de Banach de fonctions modulo les constantes.

Aussi allons-nous considérer les versions locales de ces espaces fonctionnels,
introduites par D. Goldberg [4] sous les notations hl(Rn) et bmo(R") et

rattachés depuis à la grande famille des espaces de Lizorkin-Triebel ; on
a en effet hl(Rn) — F®2(R") et bmo(R") F^o2(R/î) (voir [8]). Puisque les

opérateurs pseudo-différentiels d'ordre zéro sont bornés sur les Fspq, on obtient

Wm(E) (I-A)-'"/2(£) pour E h\R")et R"), de sorte que
les échelles de Sobolev ayant ces deux espaces pour origine sont invariantes.
Cela va nous conduire à une version précisée du théorème 1 :

Théorème 4. Pour n> 1, on a:

L°°(R") C ^'(^-'(L^R"))) C

h\R")C W~l(Wl(Ll(Rn)))C R"),

et ces quatre inclusions sont strictes.

Preuve. Compte tenu des théorèmes 1 et 2, il suffira d'établir que ^(R77)
est un sous-espace propre de W^' CW'iT'fR")). Quelques rappels sur /?' seront
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