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en norme W™(E):; la densité de D(R") dans W™(E) en découle aussitot.

Il reste a prouver l'inclusion W™(E') C (W™™(E))’, pour m > 0. Soit f
une distribution & support compact appartenant a8 W™(E’) et g € D(R"); en
appliquant la proposition 4 a f * ¢ et g, on obtient:

[f * or,9)| < “fHW"’(E’) Hg“W*’”(E);

puisque ¢, x g — g dans D(R"), il vient
[, 9) | < [I£]

autrement dit f € W™(E)'. Si f est un élément quelconque de W™"(E’), on
approche f par les fp, et on conclut comme ci-dessus.

Wm(E/) Hg H W—m(E) ]

REMARQUE. L’étude de la dualité des W™(E) peut se conduire dans le
cadre plus général de I’échelle de Sobolev associée a un Cy-groupe (voir le
chapitre III de [1], notamment le théoreme 3.3.28).
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THEOREME 3. Soit E un EBD dans D'(R), ayant les propriétés (Py) et
(Py); soit m > 0. Alors

E — W—m(Wm(E)) 7 E/ — W_m(Wm(E/)> )

Si de plus E satisfait (Py), alors les échelles de Sobolev d’origines E et E’
sont invariantes.

Preuve. D’apres le lemme 1, ’opérateur défini par

o0
Tf:/ e 'rfdt
0
est borné sur E. Puisque (Tf) =f — Tf pour f € D(R), la méme propriété

est vraie au sens des distributions quel que soit f € E. On en déduit aussitdt
que 7™ est un opérateur borné de E dans W™(E). Si f € E et g = T"(f),

1l vient
m
f=> Chg",
j=0

de sorte que f appartient a W~""(W™(E)). On peut aussi définir 7 sur E’ , a
’aide de la formule
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<Tf7 g> = A e_t<f7 T—tQ) dt;

cela nous donne E' = W—"(W™(E")); on applique alors le théoréme 2 et la
proposition 1 pour obtenir E = W"(W~™(E)) et E' = W™(W~"™(E")). Il nous
reste a vérifier la propriété (5). Pour m > k, on applique la premiére partie
de la preuve a I’espace W™ %(E), ainsi que la proposition 1; il vient

W"HE) = WE (WEWHE))) = WHW™(E));
par ailleurs:
W HE) = W (WKW HE))) = W"(WHE)).
Le cas m < k se traite de maniere analogue. Le méme raisonnement s’applique

a E'.

REMARQUE. Le théoreme 3 se retrouve aussi dans le cadre des Cy-groupes
([1], théoréme 3.3.23).

4. RESULTATS NEGATIFS EN DIMENSIONS SUPERIEURES

4.1 LA PROPRIETE DE MITIAGIN-ORNSTEIN

DEFINITION 3.  Soit £ un EBD dans D'(R?). On dit que E posséde
la propriété de Mitiagin-Ornstein si, pour toute distribution f, les conditions
O € E (j=1,2; k=0,1,2) impliquent 9,0,f € E.

PROPOSITION 5. Si E est un EBD dans D'(R?), alors W'(E) posséde la
propriété de Mitiagin-Ornstein.

Preuve. Supposons 9ff € W'(E), pour j = 1,2 et k = 0,1,2. On a
en particulier ,f € WY'(E), d’ot 8,0,f € E. La condition 87f € WI(E)
implique

B1(0100f) = (D?f) € E;

on obtient de méme 0,(0,0,f) € E. Ainsi 8,0,f appartient 3 W!(E).
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