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en norme Wm(E) ; la densité de V(Rn) dans Wm(E) en découle aussitôt.

Il reste à prouver l'inclusion Wm(E') C (W~m(E))', pour m > 0. Soit /
une distribution à support compact appartenant à Wm(E/) et g G P(Rn) ; en

appliquant la proposition 4 à / * ^ et g, on obtient :

W*Pkc9)\ E ll/llww(Lv) ll#llvy-w(£) »

puisque <pk* g g dans D(Rn), il vient

Wid)\ 'Ei WfWw'niE^WdWw^iE) '

autrement dit / G W~m(E)r. Si / est un élément quelconque de Wm(E'), on

approche / par les fpp et on conclut comme ci-dessus.

Remarque. L'étude de la dualité des Wm(E) peut se conduire dans le
cadre plus général de l'échelle de Sobolev associée à un Co-groupe (voir le

chapitre III de [1], notamment le théorème 3.3.28).

3. Résultats positifs en dimension un

THÉORÈME 3. Soit E un EBD dans P/(R), ayant les propriétés (Pq) et

(Pi); soit m > 0. Alors

E W-m(Wm(E)) f E' - W~m(Wn\E')).

Si de plus E satisfait (P2), alors les échelles de Sobolev d'origines E et E'
sont invariantes.

Preuve. D'après le lemme 1, l'opérateur défini par

poo
Tf —

J0

est borné sur E. Puisque {Tf)'f - Tf pour / e D(R), la même propriété
est vraie au sens des distributions quel que soit f e E. On en déduit aussitôt
que Tmestun opérateur borné de E dans W"'(E). Si / G E et g =-
il vient

m

j=0

de sorte que / appartient à W-'n{Wm{E)). On peut aussi définir T sur à
l'aide de la formule
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poo
C Tf,g)=/ e;J0

cela nous donne Ef W~m(Wm(Ef)) ; on applique alors le théorème 2 et la

proposition 1 pour obtenir E Wm(W~m(E)) et E! Wm(W-m{E')). Il nous
reste à vérifier la propriété (5). Pour m > k, on applique la première partie
de la preuve à l'espace Wm~k(E), ainsi que la proposition 1; il vient

Wm~k(E) W~k (Wk(Wm~k(E))) W~k{Wm(E)) ;

par ailleurs:

Wm~k(E) (Wk(W~k(E))) Wm(W~k(E)).

Le cas m < k se traite de manière analogue. Le même raisonnement s'applique
à E'.

Remarque. Le théorème 3 se retrouve aussi dans le cadre des Co -groupes
([1], théorème 3.3.23).

4. Résultats négatifs en dimensions supérieures

4.1 La propriété de Mitiagin-Ornstein

Définition 3. Soit E un EBD dans V(R2). On dit que E possède

la propriété de Mitiagin-Ornstein si, pour toute distribution /, les conditions

djf e E j 1,2 ; k — 0,1,2) impliquent d\Ô2f G E.

PROPOSITION 5. Si E est un EBD dans Uf(R2), alors Wl(E) possède la

propriété de Mitiagin-Ornstein.

Preuve. Supposons dkf G Wl(E), pour j 1,2 et k 0,1,2. On a

en particulier 82f G Wl(E), d'où 8182f G E. La condition ôjf/ G Wl{E)
implique

3i(ôiÔ2/) 02(ô?/)e£;

on obtient de même ô2(ôiô2j0 £• Ainsi ôi<92/ appartient à WUE).
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