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ÉCHELLES DE SOBOLEV D'ORIGINE ARBITRAIRE

par Gérard Bourdaud et Micha! WOJCIECHOWSKI

RÉSUMÉ. A tout espace fonctionnel E C 2?'(R") est associée classiquement
Y échelle de Sobolev W'"(E)(m G Z). La propriété
((m,k) G Z2) est connue pour être vraie si ER) (1 < <oo) ou si R")
(1 < p < oo, n > 2). Nous montrons qu'elle est en défaut pour E L'(R") et
E L°°(R"), en dimension n > 2. Plus précisément, nous établissons que E est un

sous-espace propre de et un sous-espace propre de E.

ABSTRACT. Sobolev scales with arbitrary origin.
For every functional space E C V(Rn), one considers classically the Sobolev scale

Wm{E) (m G Z). The property Wm+k(E) Wm(Wk(E» G Z2) is known to be
true for E Lp(R) 1 < p < oo) or E — Lp(R") (1 < p < oo, n> 2). We show that
it is false for E Ll(R") and E L°°(R"), with n > 2. More precisely, we prove
that E is a proper subspace of Wl(W~l(E)), and W~l(W[(E)) a proper subspace
of E.

1. Introduction

A tout sous-espace vectoriel de V'(Rn) (ou de Vr(Jn)), on peut associer
Y échelle de Sobolev d'origine E \ c'est la famille (Wm(E)) telle que:

(1) Wm(E){fGD'(R") : /(a) G (|a| < m)},

(2) W~*{ E)={f G P'(R") : 3/q. G ^ A«'}
| CK | </77

pour tout m G N. Est-il vrai que n'importe lequel des Wm{E) puisse être pris
comme origine de l'échelle? En d'autres termes, la propriété

(3) V (m, k) G Z2 : Wm+k(E) Wm(Wk(E))

est-elle satisfaite par l'espace E La réponse est positive pour E Lp(Rn)
(!</?< +oo); il suffit d'observer que
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(4) Wm (Lp(Rn)) (J - A)~m/2 (Lp(Rn))

où À est le laplacien. L'identité (4) est une conséquence classique du théorème
des multiplicateurs de Hörmander-Mihlin (voir par exemple [3]). Les espaces
Ll(R) et L°°(R) satisfont également (3); il s'agit d'une propriété fort générale
des espaces invariants par translation en dimension 1, dont nous rappellerons
la démonstration au paragraphe 3.

La question de savoir si les espaces E L^R") et E — L°°(Rn) (n > 1)
vérifient (3) était ouverte jusqu'à ce que, très récemment, M. Wojciechowski [9]
démontre que W~l (W^L^T2))) est un sous-espace propre de L^T2); en

d'autres termes: que certaines fonctions / G Ll(T2) ne peuvent s'exprimer
sous la forme

fix, y) faix,y)+ x,y),
ox oy

où les fonctions fj appartiennent à Wl{Ll{T2)).
Il se trouve que le théorème de Wojciechowski est en fait la conséquence

directe de propriétés classiques des espaces de Sobolev. Une première façon de

le voir consiste à passer par l'intermédiaire de l'espace BV(R2) des fonctions
à variation bornée. On sait en effet que Z?U(R2) c L2(R2) et on voit facilement

que Z3(R2) n'est pas inclus dans W~l(L2(R2)).
Une seconde approche consiste à traiter le problème dual ; autrement dit : à

prouver que L°° est un sous-espace propre de Wl (Vk-1(L°°)). Pour ce faire,

il suffit de disposer d'une fonction g G L°° telle que

Êa*L"'
alors que les autres dérivées d'ordre 1 et 2 appartiennent à L°° ; dans ce

cas, on voit facilement que

et le tour est joué. Or l'existence d'une telle fonction g a été établie par
Mitiagin, il y a une quarantaine d'années ([5], voir aussi [2]); pour sa part,
Ornstein ([6], [9]) a construit une fonction jouant le même rôle dans L1. Cela

nous conduit à notre principal résultat:

Théorème 1. Pour n>

(i) W1(W-1(LTO(R")))£Z,°°(Rn), (ii) L'(R") £ W'cWCL'CR"))),

(iii) Wl(W-l(Ll(Rn))) L\Rn),(iv) L^CR") ^ W-1(W1(L00(R"))).



ÉCHELLES DE SOBOLEV D'ORIGINE ARBITRAIRE 327

Avant d'y parvenir, il nous faudra faire quelques rappels sur les espaces

de Banach de distributions, en particulier sur leur dualité, et traiter le cas très

particulier de la dimension 1.

Notations. Choisissons une fois pour toutes les fonctions usuelles de

troncation et de régularisation. Ce sont des fonctions positives (p V(W)
telles que

pix) —1 (pour |x| < 1/2) p(x)0 (pour > 1), J 1 ;

nous poserons

Pk(x) P(I)Pk{x) k"<p(kx).

Les opérateurs de translation et de dilatation sont définis par:

T,f(x) =f(x-t) (teR"),(^) (A > 0).

On pose enfin f(x) —

2. Les espaces de Banach de distributions

2.1 Définition et premières propriétés

Si E un sous-espace vectoriel de V(Rn), muni d'une norme complète
rendant continue l'injection canonique E ^ V(Rn), on dit que E est un

espace de Banach de distributions (EBD). Notons d'ailleurs que toute injection
canonique E ^ F entre deux EBD est nécessairement continue; c'est une
conséquence immédiate du théorème du graphe fermé. En particulier, un

sous-espace donné de Vf(Rn) possède au plus une structure d'EBD, à une

équivalence de normes près.

PROPOSITION L Si E est un EBD incluant D(Rn) comme sous-espace
dense, alors E' s'identifie à un EBD. Si E et F sont des EBD incluant V(Rn)
comme sous-espace dense, alors E' — F' si et seulement si E — F.

Preuve. Si V(Rn) est dense dans E, l'application de restriction u ^ u\x>çr»)

est linéaire, injective et continue de E' dans D'(RW), de sorte qu'on peut identifier

E' avec le sous-espace suivant de Vf(W) :

{«GX»'(R") : 3C>0,Vj£Î)(R"), < ||p||£}
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