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ECHELLES DE SOBOLEV D’ORIGINE ARBITRAIRE

par Gérard BOURDAUD et Michal WOJCIECHOWSKI

RESUME. A tout espace fonctionnel E C D’(R") est associée classiquement
’échelle de Sobolev W™E) (m € Z). La propriété W"H(E) = W™ (WX(E))
((m, k) € Z*) est connue pour étre vraie si E = I’(R) (1 <p < oo)ousi E=L"(R")
(1 < p < oo, n>2). Nous montrons qu’elle est en défaut pour £ = LY(R") et
E = L>(R"), en dimension n > 2. Plus précisément, nous établissons que E est un
sous-espace propre de W W—YE)), et W H{(WY(E)) un sous-espace propre de E.

ABSTRACT. Sobolev scales with arbitrary origin.

For every functional space E C D'(R"), one considers classically the Sobolev scale
W™(E) (m € Z). The property W™ (E) = W™(W*(E)) ((m,k) € Z*) is known to be
true for E=L"R) (1 <p<o0)or E=I’R") (1 <p < oo, n>2). We show that
it is false for E = L'(R") and E = L*°(R"), with n > 2. More precisely, we prove
that £ 1s a proper subspace of W' (W~YE)), and W Y{WYE)) a proper subspace
of E.

1. INTRODUCTION

A tout sous-espace vectoriel de D'(R") (ou de D’(T")), on peut associer
I’échelle de Sobolev d’origine E; c’est la famille (W’"(E))m <, telle que:

(1) W'E)={feD'R") : fY€E (o <m},
2) WE)={feDR") : 3fu€E, f= ) f},
|| <m

pour tout m € N. Est-il vrai que n’importe lequel des W™(E) puisse &tre pris
comme origine de I’échelle ? En d’autres termes, la propriété

(3) V(mk)eZ* : W"NE) = WWHE))

est-elle satisfaite par I'espace E ? La réponse est positive pour E = LP(R")
(1 < p < +00); il suffit d’observer que
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4) W™ (LPRM) = (I — A2 (PRY) ,

ou A est le laplacien. L’identité (4) est une conséquence classique du théoreme
des multiplicateurs de Hérmander-Mihlin (voir par exemple [3]). Les espaces
L'(R) et L°(R) satisfont €galement (3); il s’agit d’une propriété fort générale
des espaces invariants par translation en dimension 1, dont nous rappellerons
la démonstration au paragraphe 3.

La question de savoir si les espaces E = L'(R") et E = L>®(R") (n> 1)
vérifient (3) était ouverte jusqu’a ce que, trés récemment, M. Wojciechowski [9]
démontre que W~!'(W!(L'(T?))) est un sous-espace propre de L'(T?); en
d’autres termes: que certaines fonctions f € L'(T?) ne peuvent s’exprimer
sous la forme

of of2

fx,y) = folx,y) + a(x,y) + 8—y(x,y),

ou les fonctions f; appartiennent a W'(L}(T?)).

Il se trouve que le théoreme de Wojciechowski est en fait la conséquence
directe de propriétés classiques des espaces de Sobolev. Une premiere fagon de
le voir consiste a passer par 1’intermédiaire de 1’espace BV(R?) des fonctions
4 variation bornée. On sait en effet que BV(R?) C L*(R?) et on voit facilement
que L'(R?) n’est pas inclus dans W—1(L2(R?)).

Une seconde approche consiste a traiter le probleme dual; autrement dit: a
prouver que L est un sous-espace propre de W' (W_I(LOO)). Pour ce faire,
il suffit de disposer d’une fonction g € L*° telle que

0%g

0x0y
alors que les autres dérivées d’ordre 1 et 2 appartiennent a L°° ; dans ce
cas, on voit facilement que

¢ L,

0%g 1

- e W' (W™
Ox0y ( (%)
et le tour est joué. Or I’existence d’une telle fonction g a été établie par
Mitiagin, il y a une quarantaine d’années ([5], voir aussi [2]); pour sa part,
Ornstein ([6], [9]) a construit une fonction jouant le méme rdle dans L'. Cela
nous conduit & notre principal résultat:

THEOREME 1. Pour n > 1,
() WWIECERY) ¢ L®®RY, () L'RH¢ w I WEL®RY),
iy WW L' ®RM) ¢ L'(RY, (iv) L®°®R") ¢ W' (WI(L>RMY)).
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Avant d’y parvenir, il nous faudra faire quelques rappels sur les espaces
de Banach de distributions, en particulier sur leur dualité, et traiter le cas tres
particulier de la dimension 1.

NOTATIONS. Choisissons une fois pour toutes les fonctions usuelles de
troncation et de régularisation. Ce sont des fonctions positives p, ¢ € D(R")
telles que

p(x)=1 (pour |x| <1/2), px)=0 (pour |x|>1), /go(x)dx =]

nous poserons

a0 =p(7), 0 =K.

Les opérateurs de translation et de dilatation sont définis par:
X
nf@=fa—1 (ERY, mf@=f(F) O>0.

On pose enfin fN"(x) = f(—x).

2. LES ESPACES DE BANACH DE DISTRIBUTIONS

2.1 DEFINITION ET PREMIERES PROPRIETES

Si E un sous-espace vectoriel de D/(R"), muni d’une norme compléte
rendant continue I’injection canonique E <— D’(R"), on dit que E est un
espace de Banach de distributions (EBD). Notons d’ailleurs que toute injection
canonique £ — F entre deux EBD est nécessairement continue; c’est une
conséquence immédiate du théoreme du graphe fermé. En particulier, un
sous-espace donné de D’(R") posseéde au plus une structure d’EBD, a une
équivalence de normes pres.

PROPOSITION 1. Si E est un EBD incluant D(R") comme sous-espace
dense, alors E' s’identifie & un EBD. Si E et F sont des EBD incluant D(R")
comme sous-espace dense, alors E' = F' si et seulement si E = F.

Preuve. Si D(R") est dense dans E, I’application de restriction u — u|pre)
est linéaire, injective et continue de E’ dans D’(R"), de sorte qu’on peut iden-
tifier E’ avec le sous-espace suivant de D’(R"):

{#€D'R" :3C>0,Yge DR, |{u,g9)| < Cllglls}.
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Si E' C F', il existe C > 0 tel que, pour tout u € E',
Jullpr < Cllullg
puisque
lglly = sup {|(u, g)| : w€ E", [lully <1},

il vient ||g|l; < Cllg|lz pour tout g € D(R"), ce qui, par densité, entraine
FCE.

2.2 ECHELLES DE REGULARITE

DEFINITION 1.  Une suite (E™),,cz d’EBD est une échelle de régularité
si, pour tous me Z et j=1,...,n:

() E"'CE" et (i) 8 (E"') CE™.
E® est appelé I’origine de I’échelle.
Si E est un EBD donné, il existe au moins une échelle de régularité

d’origine E : c’est I’échelle de Sobolev définie par (1) et (2); on vérifie en
effet ([3]) que W™(E) et W™™(E) sont des EBD pour les normes respectives:

1 lmey = 22 117l
la|<m
[oe|<m lae|<m

Des que I’espace E est invariant sous I’effet des automorphismes linéaires de
R", I’espace W™(E) (m € Z) ne dépend pas du systeme de coordonnées par
rapport auxquelles sont calculées les dérivées partielles.

PROPOSITION 2. On a W™K(E) = W™(WXE)), quel que soit E, deés que
les entiers m et k sont de méme signe.

Preuve. Elle repose sur la remarque élémentaire suivante: si o € N*\ {0}
et si I’entier m vérifie 0 < m < |af, il existe § € N" tel que § < a et
|G| = m. Les détails sont laissés au lecteur.

DEFINITION 2.  L’échelle de Sobolev d’origine E est dite invariante si
elle vérifie la propriété (3), ce qui, d’aprés la proposition précédente, est
équivalent a:

(5) W HE) = W"(WME) = W W™E)  (m>0, k>0).
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2.3 DUALITE DE L’ECHELLE DE SOBOLEV

On notera Ey et WJ'(E) les fermetures respectives de D(R™) dans E et
dans W™(E).

PROPOSITION 3. Soit E un EBD incluant D(R"). On a alors:

W (WRE) =W ((E)) (m=>0),
Gy  (Wom™E) < W" ((Ep))  (m>0).

Preuve. Voir [3]. Précisons que, dans I’ouvrage en question, 1’inclusion
1] —m /
W (&) C (W)

est donnée pour vraie; mais il y a une lacune dans la preuve: quand on
décompose g € D(R") sous la forme

g= Y ¢

|| <m

ou g, € D(R"), rien ne dit qu’on obtient ainsi toutes les décompositions
possibles de g avec g, € E ! Une chose reste exacte cependant:

PROPOSITION 4. Soit m > 0. Alors, pour tous f € D(R") et g € W ™(E),
on a:

(9. /)] <1171

Wm((Ep)") Hgllw—~rlz(E) .

COROLLAIRE 1. Soit m > 0. Si DR") est dense dans W™ ((Eo)’ ) alors

(6) (Wo"(B))' = W™ ((Bo)') .

On a, par exemple, la propriété bien connue suivante :
(W ®RY)) = w? RY),

pour 1 <p <oo, p=p/(p—1).
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2.4 LES D(R")-MODULES INVARIANTS PAR TRANSLATION

Nous allons voir que I’identité (6) est vérifiée pour une classe assez vaste
d’EBD invariants par translation.

On dit que E est un D(R")-module si, pour tous g € D(R") et f € E,
on a gf € E. Notons qu’alors I’opérateur linéaire f — gf est borné sur E et

donc que la fonction g admet une norme en tant que multiplicateur ponctuel
de E:

191132y = sup{llgfllg = Ifllz < 1}

THEOREME 2. Soit E un EBD satisfaisant les trois propriétés suivantes:
(Pg) D(R") est un sous-espace dense de E ;
(P1) pour tout f € E et tcR", ona 7,f €E et |1fl|lp = ||fllg;
(P;) E est un D(R")-module et, pour tout g € D(R"), on a:

sup [[aagll g < +o0.
A>1

Alors, pour m € Z.,,
1. E' posséde les propriétés (P1) et (Py);
2. WME) possede les propriétés (Py), (P1) et (Py);
3. (WE)) = W™(E").

Preuve. Le fait que E’ et W™(E) possédent les propriétés (P;) et (P,)
se vérifie sans difficulté. La preuve de la seconde assertion repose sur les
résultats classiques suivants:

LEMME 1. Si E vérifie (Py) et (Py), alors, pour tous g € D(R") et f € E,
ona gxf €E et |gxfllz < |gllfllg; la méme estimation est satisfaite
dans E' et dans W™(E) (me€ Z).

LEMME 2. Sous les hypothéses du théoreme 2, on a, pour tous f € E et
g € DR"),

kiigoof(hkg) =g f et kl}gwﬁ(hl/kg)*f = ( / g(X)dx> f

dans ’espace de Banach E.

A T’aide du lemme 2, on montre ais€ément que, pour f € W"(E),

i _ i _
k_}?oofpk Fa k_;_rgloowk*f f
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en norme W™(E):; la densité de D(R") dans W™(E) en découle aussitot.

Il reste a prouver l'inclusion W™(E') C (W™™(E))’, pour m > 0. Soit f
une distribution & support compact appartenant a8 W™(E’) et g € D(R"); en
appliquant la proposition 4 a f * ¢ et g, on obtient:

[f * or,9)| < “fHW"’(E’) Hg“W*’”(E);

puisque ¢, x g — g dans D(R"), il vient
[, 9) | < [I£]

autrement dit f € W™(E)'. Si f est un élément quelconque de W™"(E’), on
approche f par les fp, et on conclut comme ci-dessus.

Wm(E/) Hg H W—m(E) ]

REMARQUE. L’étude de la dualité des W™(E) peut se conduire dans le
cadre plus général de I’échelle de Sobolev associée a un Cy-groupe (voir le
chapitre III de [1], notamment le théoreme 3.3.28).

3. RESULTATS POSITIFS EN DIMENSION UN

THEOREME 3. Soit E un EBD dans D'(R), ayant les propriétés (Py) et
(Py); soit m > 0. Alors

E — W—m(Wm(E)) 7 E/ — W_m(Wm(E/)> )

Si de plus E satisfait (Py), alors les échelles de Sobolev d’origines E et E’
sont invariantes.

Preuve. D’apres le lemme 1, ’opérateur défini par

o0
Tf:/ e 'rfdt
0
est borné sur E. Puisque (Tf) =f — Tf pour f € D(R), la méme propriété

est vraie au sens des distributions quel que soit f € E. On en déduit aussitdt
que 7™ est un opérateur borné de E dans W™(E). Si f € E et g = T"(f),

1l vient
m
f=> Chg",
j=0

de sorte que f appartient a W~""(W™(E)). On peut aussi définir 7 sur E’ , a
’aide de la formule
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<Tf7 g> = A e_t<f7 T—tQ) dt;

cela nous donne E' = W—"(W™(E")); on applique alors le théoréme 2 et la
proposition 1 pour obtenir E = W"(W~™(E)) et E' = W™(W~"™(E")). Il nous
reste a vérifier la propriété (5). Pour m > k, on applique la premiére partie
de la preuve a I’espace W™ %(E), ainsi que la proposition 1; il vient

W"HE) = WE (WEWHE))) = WHW™(E));
par ailleurs:
W HE) = W (WKW HE))) = W"(WHE)).
Le cas m < k se traite de maniere analogue. Le méme raisonnement s’applique

a E'.

REMARQUE. Le théoreme 3 se retrouve aussi dans le cadre des Cy-groupes
([1], théoréme 3.3.23).

4. RESULTATS NEGATIFS EN DIMENSIONS SUPERIEURES

4.1 LA PROPRIETE DE MITIAGIN-ORNSTEIN

DEFINITION 3.  Soit £ un EBD dans D'(R?). On dit que E posséde
la propriété de Mitiagin-Ornstein si, pour toute distribution f, les conditions
O € E (j=1,2; k=0,1,2) impliquent 9,0,f € E.

PROPOSITION 5. Si E est un EBD dans D'(R?), alors W'(E) posséde la
propriété de Mitiagin-Ornstein.

Preuve. Supposons 9ff € W'(E), pour j = 1,2 et k = 0,1,2. On a
en particulier ,f € WY'(E), d’ot 8,0,f € E. La condition 87f € WI(E)
implique

B1(0100f) = (D?f) € E;

on obtient de méme 0,(0,0,f) € E. Ainsi 8,0,f appartient 3 W!(E).
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4.2 PREUVE DU THEOREME 1
Nous procéderons en trois étapes.

1. Les espaces L!(R?) et L®(R?) ne possédent pas la propricte de
Mitiagin-Ornstein (voir [5] et [6], ainsi que D’article de Boman [2]). D’apres
la proposition 3, cela suffit pour établir que L'(R?) et L>(R?) sont des sous-
espaces propres de W' (W~'(L(R?))) et W'(W~!(L>(R?))) respectivement.

2. Pour vérifier la propriété (i) en dimension n > 3, on considere
uwe WHWHL=®R))) \ LZ(R?)

et v une fonction non nulle appartenant 3 D(R"~2). On voit aisément que la
fonction f = u ® v vérifie

FeW WTIZZR)\ LZRY).

La propriété (iii) se prouve de la méme facon.

3. On applique enfin le théoréme 2 et la proposition 1, pour en déduire
(ii) et (iv).

4.3 CONTRE-EXEMPLES EXPLICITES

Nous allons voir qu’il est possible de produire des contre-exemples pour
les non-inclusions (1) et (i1) sans invoquer le théoreme de Mitiagin. Il est clair
qu’il suffit de travailler en dimension 2.

Soit
u(x,y) = 2x — xlog(x2 + yz) — 2y arctan(f> :
y

Onauecl et

)

- (,9) = —log( +57);
si on pose f(x,y) = —p(x,y)log(x* + y%), il vient

Fe Oup) u@
Ox Ox’

de sorte que f appartient 3 W—1(L>°(R?)). Soient

0
v(x,y) = —2arctan (ﬁ) L winy) = —8—Z<x,y> log(? +y?).
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Les fonctions v et w appartiennent a L* et on a

g = A pv) +w—v-8—p
Ox Oy Oy’

0
d’ou (‘9_]; € WL (R?)). Un calcul analogue montre que gf— appartient
Y
a WL(L>*°(R?)). Finalement f appartient 3 W' (W~1(L*°(R?))) mais non 2
L>®(R?).

Soit g une fonction intégrable positive telle que
fg = +oo,
R2

par exemple g(x,y) = P, y) . Si ’on avait g €¢ W=I(WI(LY)),

(% +y?) log* (& +y?)
la proposition 4 et le théoreme 2 nous donneraient

(g, vk * )] < |lx *f“wl(w—l(Loo)) Hg“W—I(Wl(Ll))’
d’ou
/Q(SDk ) < fllwiw-1eon | 9llw=10m 1y 5

puisque ¢ x f tend vers f presque partout, le lemme de Fatou nous
conduirait a:

/fg<+oo,

ce qui contredit le choix de g.

4.4 1ES PLONGEMENTS DE SOBOLEV SOUS-JACENTS

La non-inclusion L'(R*) ¢ W~ (W'(L'(R?))) peut s’interpréter de maniere
fort élémentaire en la factorisant a travers des plongements de Sobolev. On
commence par observer que '

(7) WL (R?) C L*(R?)

(ceci parce que 1 = 1 — 3 ; voir par exemple [7], chapitre 5, théoréme 2).

On dispose en fait d’un plongement de Sobolev un peu plus général que (7),

a savoir:
| BV(R?) c L*(R%);

BV(R?) est I’espace des fonctions dont les dérivées premiéres sont des mesures

bornées sur R?. Dés lors I’inclusion

L'R» c W (W' (RY))
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impliquerait a fortiori
L'R» c W I(L*(R?)),
ou encore, en passant aux duaux:
W' (L*(R?) € LZ(RY);

or W!(L*(R?)) est I’espace de Sobolev critique, qui s’injecte dans BMO(R?)
et non dans L®(R?).

5. POUR ALLER PLUS LOIN

Depuis les travaux de Stein et Weiss, ’espace de Hardy H I(R™) et son
dual BMO(R") sont considérés comme des substituts naturels de L!'(R") et
L*(R™"). BMO(R") n’est pas, a proprement parler, un EBD puisque, pour sa
norme naturelle, c’est un espace de Banach de fonctions modulo les constantes.
Aussi allons-nous considérer les versions locales de ces espaces fonctionnels,
introduites par D. Goldberg [4] sous les notations A!(R") et bmo(R") et
rattachés depuis a la grande famille des espaces de Lizorkin-Triebel; on
a en effet A'(R") = F),(R") et bmo(R") = F°_,(R") (voir [8]). Puisque les
opérateurs pseudo-différentiels d’ordre zéro sont bornés sur les F}_, on obtient
WM™E) = (I — A)~"*(E) pour E = h'(R") et E = bmo(R"), de sorte que
les échelles de Sobolev ayant ces deux espaces pour origine sont invariantes.
Cela va nous conduire a une version précisée du théoréme 1:

THEOREME 4. Pour n>1, on a:

L*R") c W' (W™H(L™(R")) C bmo(R"),
hl(Rn) - W——l (WI(LI(RM))) C LI(RH),
et ces quatre inclusions sont strictes.

Preuve. Compte tenu des théoremes 1 et 2, il suffira d’établir que h'(R")
est un sous-espace propre de W' (W!'(L!(R")). Quelques rappels sur 4! seront
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d’abord utiles. Soit ¢ € D(R*) une fonction telle que

VEFAOD 1 ) p@H=1;

JEZL

on dispose de 1’équivalence de normes
i 2,1/2
el = Nl + || (3 [ Dy )2
j21

(voir par exemple [8]). Posons

W) =pwm  EeR™, neR);

alors ¥ € D(R"\ {0}) de sorte que, pour une certaine constante C > 0, on a

(8) | e D)) = €1 e
Jj21

Soit # € S(R*!) la fonction dont la transformée de Fourier est p; soit u
une fonction intégrable sur R, n’appartenant pas a A'(R); soit enfin

fy) =00u@y) (xeR™', yeR).

D’aprés le théoreme 3, il existe v € WH(L!(R)) tel que u = v+’ ; cela nous
donne

f=0v+0,0®0),

avec 0@v € WHLIRM), d’ou f € W-H{(WIL'RM)). Puisque p(277€) p§) =
p(&) pour j > 1, il vient

P2 /D)(f) = 6 @ (2 D)(u).

Si la fonction f appartenait a h'(R"), 1’estimation (8) nous donnerait

01 || lw@ D)) || < +oo,
j21

d’ou u € K'(R), ce qui contredit I’hypotheése.
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6. QUESTIONS OUVERTES

1. Pour autant que nous le sachions, la non-inclusion
L®RY) ¢ W™H{WILZR?)),

ne se ramene pas, comme c’est le cas pour L', & des observations élémentaires
sur les plongements de Sobolev.

2. Le théoréme 4 laisse ouvert le probleme d’une description explicite
simple des espaces fonctionnels W (W~1(L>®(R™))) et W I(WI(L'(R"))).

3. Dans le méme ordre d’idée, on vérifie facilement que les EBD
E, = W"(W "(L™R"))) (m = 0)

forment une suite croissante de sous-espaces de bmo(R"). Cette suite est-elle
strictement croissante ? Peut-on décrire simplement le sous-espace |, ~q En ?
Des questions homologues se posent pour la suite décroissante

W WL (RY)  (m>0)

de sous-espaces de L'(R").

4. On peut conjecturer une réciproque de la proposition 5: si E posséde
la propriété de Mitiagin-Ornstein, alors E = W (W~Y(E)); cela reviendrait
a dire que W' (W !(E)) est le plus petit EBD incluant E et possédant la
propriété de Mitiagin-Ornstein.

5. Peut-on trouver une «bonne» échelle de régularité d’origine L' ? Pour
préciser la question, désignons par £ la classe de tous les EBD de D/(R").
Existe-t-il une famille (§™),cz d’applications de £ dans & telle que:

e pour tout £ € &, (§"(E))mez est une échelle de régularité d’origine E,

o STHRLIR™) = S™(SHL'(R"))) pour tout (m, k) € Z2 9
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