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ÉCHELLES DE SOBOLEV D'ORIGINE ARBITRAIRE

par Gérard Bourdaud et Micha! WOJCIECHOWSKI

RÉSUMÉ. A tout espace fonctionnel E C 2?'(R") est associée classiquement
Y échelle de Sobolev W'"(E)(m G Z). La propriété
((m,k) G Z2) est connue pour être vraie si ER) (1 < <oo) ou si R")
(1 < p < oo, n > 2). Nous montrons qu'elle est en défaut pour E L'(R") et
E L°°(R"), en dimension n > 2. Plus précisément, nous établissons que E est un

sous-espace propre de et un sous-espace propre de E.

ABSTRACT. Sobolev scales with arbitrary origin.
For every functional space E C V(Rn), one considers classically the Sobolev scale

Wm{E) (m G Z). The property Wm+k(E) Wm(Wk(E» G Z2) is known to be
true for E Lp(R) 1 < p < oo) or E — Lp(R") (1 < p < oo, n> 2). We show that
it is false for E Ll(R") and E L°°(R"), with n > 2. More precisely, we prove
that E is a proper subspace of Wl(W~l(E)), and W~l(W[(E)) a proper subspace
of E.

1. Introduction

A tout sous-espace vectoriel de V'(Rn) (ou de Vr(Jn)), on peut associer
Y échelle de Sobolev d'origine E \ c'est la famille (Wm(E)) telle que:

(1) Wm(E){fGD'(R") : /(a) G (|a| < m)},

(2) W~*{ E)={f G P'(R") : 3/q. G ^ A«'}
| CK | </77

pour tout m G N. Est-il vrai que n'importe lequel des Wm{E) puisse être pris
comme origine de l'échelle? En d'autres termes, la propriété

(3) V (m, k) G Z2 : Wm+k(E) Wm(Wk(E))

est-elle satisfaite par l'espace E La réponse est positive pour E Lp(Rn)
(!</?< +oo); il suffit d'observer que



326 G. BOURDAUD ET M. WOJCIECHOWSKI

(4) Wm (Lp(Rn)) (J - A)~m/2 (Lp(Rn))

où À est le laplacien. L'identité (4) est une conséquence classique du théorème
des multiplicateurs de Hörmander-Mihlin (voir par exemple [3]). Les espaces
Ll(R) et L°°(R) satisfont également (3); il s'agit d'une propriété fort générale
des espaces invariants par translation en dimension 1, dont nous rappellerons
la démonstration au paragraphe 3.

La question de savoir si les espaces E L^R") et E — L°°(Rn) (n > 1)
vérifient (3) était ouverte jusqu'à ce que, très récemment, M. Wojciechowski [9]
démontre que W~l (W^L^T2))) est un sous-espace propre de L^T2); en

d'autres termes: que certaines fonctions / G Ll(T2) ne peuvent s'exprimer
sous la forme

fix, y) faix,y)+ x,y),
ox oy

où les fonctions fj appartiennent à Wl{Ll{T2)).
Il se trouve que le théorème de Wojciechowski est en fait la conséquence

directe de propriétés classiques des espaces de Sobolev. Une première façon de

le voir consiste à passer par l'intermédiaire de l'espace BV(R2) des fonctions
à variation bornée. On sait en effet que Z?U(R2) c L2(R2) et on voit facilement

que Z3(R2) n'est pas inclus dans W~l(L2(R2)).
Une seconde approche consiste à traiter le problème dual ; autrement dit : à

prouver que L°° est un sous-espace propre de Wl (Vk-1(L°°)). Pour ce faire,

il suffit de disposer d'une fonction g G L°° telle que

Êa*L"'
alors que les autres dérivées d'ordre 1 et 2 appartiennent à L°° ; dans ce

cas, on voit facilement que

et le tour est joué. Or l'existence d'une telle fonction g a été établie par
Mitiagin, il y a une quarantaine d'années ([5], voir aussi [2]); pour sa part,
Ornstein ([6], [9]) a construit une fonction jouant le même rôle dans L1. Cela

nous conduit à notre principal résultat:

Théorème 1. Pour n>

(i) W1(W-1(LTO(R")))£Z,°°(Rn), (ii) L'(R") £ W'cWCL'CR"))),

(iii) Wl(W-l(Ll(Rn))) L\Rn),(iv) L^CR") ^ W-1(W1(L00(R"))).
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Avant d'y parvenir, il nous faudra faire quelques rappels sur les espaces

de Banach de distributions, en particulier sur leur dualité, et traiter le cas très

particulier de la dimension 1.

Notations. Choisissons une fois pour toutes les fonctions usuelles de

troncation et de régularisation. Ce sont des fonctions positives (p V(W)
telles que

pix) —1 (pour |x| < 1/2) p(x)0 (pour > 1), J 1 ;

nous poserons

Pk(x) P(I)Pk{x) k"<p(kx).

Les opérateurs de translation et de dilatation sont définis par:

T,f(x) =f(x-t) (teR"),(^) (A > 0).

On pose enfin f(x) —

2. Les espaces de Banach de distributions

2.1 Définition et premières propriétés

Si E un sous-espace vectoriel de V(Rn), muni d'une norme complète
rendant continue l'injection canonique E ^ V(Rn), on dit que E est un

espace de Banach de distributions (EBD). Notons d'ailleurs que toute injection
canonique E ^ F entre deux EBD est nécessairement continue; c'est une
conséquence immédiate du théorème du graphe fermé. En particulier, un

sous-espace donné de Vf(Rn) possède au plus une structure d'EBD, à une

équivalence de normes près.

PROPOSITION L Si E est un EBD incluant D(Rn) comme sous-espace
dense, alors E' s'identifie à un EBD. Si E et F sont des EBD incluant V(Rn)
comme sous-espace dense, alors E' — F' si et seulement si E — F.

Preuve. Si V(Rn) est dense dans E, l'application de restriction u ^ u\x>çr»)

est linéaire, injective et continue de E' dans D'(RW), de sorte qu'on peut identifier

E' avec le sous-espace suivant de Vf(W) :

{«GX»'(R") : 3C>0,Vj£Î)(R"), < ||p||£}
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Si E' C F', il existe C > 0 tel que, pour tout u G E',

ll^ll/r/ ^ E 11 u 11

£/,
puisque

\\g\\E sup {| (m, 0)| : u G E\ ||«||£/ < 1},

il vient ||0||£ < C||g||F pour tout g G X>(R"), ce qui, par densité, entraîne

F CE.

2.2 Échelles de régularité

Définition 1. Une suite (Em)mez d'EBD est une échelle de régularité
si, pour tous m G Z et j 1,..., n :

(i) Em+l C Em et (ii) d) (£m+1) C Em

E° est appelé Y origine de l'échelle.

Si E est un EBD donné, il existe au moins une échelle de régularité
d'origine E : c'est l'échelle de Sobolev définie par (1) et (2); on vérifie en

effet ([3]) que Wm{E) et W~m(E) sont des EBD pour les normes respectives :

\\f\\wm(E)= ^2 ll/(a)L'
\a\<m

WfWw-^E)=inf{ CHA I(e : /= XU«a)}-
|o;|<m \a\<m

Dès que l'espace E est invariant sous l'effet des automorphismes linéaires de

Rn, l'espace Wm(E) (m e Z) ne dépend pas du système de coordonnées par
rapport auxquelles sont calculées les dérivées partielles.

PROPOSITION 2. On a Wm+k(E) — Wm(Wk(E)), quel que soit E, dès que
les entiers m et k sont de même signe.

Preuve. Elle repose sur la remarque élémentaire suivante : si a G Nn \ {0}
et si l'entier m vérifie 0 < m < |a|, il existe ß G N" tel que ß < a et

\ß\ — m. Les détails sont laissés au lecteur.

Définition 2. L'échelle de Sobolev d'origine E est dite invariante si

elle vérifie la propriété (3), ce qui, d'après la proposition précédente, est

équivalent à:

(5) Wm-k(E) Wm(W~k(E)) W-k(Wm(E)) (m> 0, 0).
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2.3 Dualité de l'échelle de Sobolev

On notera E0 et W(E) les fermetures respectives de V(Rn) dans E et

dans Wm(E).

Proposition 3. Soit E un EBD incluant V(Rn). On a alors :

(i) (W^C E))'W~m )') (m > 0),

(ii) Wôm(E))'C r 0).

Preuve. Voir [3]. Précisons que, dans l'ouvrage en question, l'inclusion

Wm ((Eo)')C (Wêm(E))'

est donnée pour vraie; mais il y a une lacune dans la preuve: quand on

décompose g G VÇRn) sous la forme

9= Yl 9a]
\a\<m

où ga G V(Rn), rien ne dit qu'on obtient ainsi toutes les décompositions
possibles de g avec ga G E Une chose reste exacte cependant :

Proposition 4. Soit m > 0. Alors, pour tous f g V(Rn) et g e W~n\E),
on a:

\(g,f)\ ^ ll/llw'COEoy) •

COROLLAIRE 1. Soit m > 0. Si V(Rn) est dense dans Wm ((E0)f), alors

(6) (w-"\E)y wm((E0y).

On a, par exemple, la propriété bien connue suivante :

(W~m(U(R")))'")),

pour 1 < p < oo, p' p/(p - 1).
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2.4 Les V(Rn) -modules invariants par translation
Nous allons voir que l'identité (6) est vérifiée pour une classe assez vaste

d'EBD invariants par translation.
On dit que E est un V(Rn)-module si, pour tous g G V(Rn) et / G E,

on a gf G E. Notons qu'alors l'opérateur linéaire f gf est borné sur E et
donc que la fonction g admet une norme en tant que multiplicateur ponctuel
de E :

II#IIm(e) sup{|Is/1U • Il/Il* <1}.

THÉORÈME 2. Soit E un EBD satisfaisant les trois propriétés suivantes:

(Po) V(Rn) est un sous-espace dense de E ;

(Pi) pour tout f G E et t G Rn, on a rtf G E et ||rr/||£ =s ||/||£;
(P2) E est un P(Rn)-module et, pour tout g G V(Rn), on a:

SUp||ÄAfflU(£) < +°°'
À> 1

Alors, pour m G Z,
1. E' possède les propriétés (Pi) et (P2)/
2. Wm(E) possède les propriétés (Po), (Pi) et (P2);
3. Wm(E))'W~m(E').

Preuve. Le fait que E' et Wm(E) possèdent les propriétés (Pi) et (P2)

se vérifie sans difficulté. La preuve de la seconde assertion repose sur les

résultats classiques suivants:

LEMME 1. Si E vérifie (Po) et (Pi), alors, pour tous g G V(Rn) et f e E,
on a g*f G E et \\g*f\\E S IMIill/IU* ^a m^me estimation est satisfaite
dans E' et dans Wm(E) (me Z).

LEMME 2. Sous les hypothèses du théorème 2, on a, pour tous f e E et

g e V(W),

lim f(hkg)g(0)fetlim k"(hi/kg)*f= [
k—>+00 S-+00 yj J

dans Vespace de Banach E.

A l'aide du lemme 2, on montre aisément que, pour / G Wm(E),

lim fpk=f, lim <pk*f=f
k->--\-oo k—»+00
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en norme Wm(E) ; la densité de V(Rn) dans Wm(E) en découle aussitôt.

Il reste à prouver l'inclusion Wm(E') C (W~m(E))', pour m > 0. Soit /
une distribution à support compact appartenant à Wm(E/) et g G P(Rn) ; en

appliquant la proposition 4 à / * ^ et g, on obtient :

W*Pkc9)\ E ll/llww(Lv) ll#llvy-w(£) »

puisque <pk* g g dans D(Rn), il vient

Wid)\ 'Ei WfWw'niE^WdWw^iE) '

autrement dit / G W~m(E)r. Si / est un élément quelconque de Wm(E'), on

approche / par les fpp et on conclut comme ci-dessus.

Remarque. L'étude de la dualité des Wm(E) peut se conduire dans le
cadre plus général de l'échelle de Sobolev associée à un Co-groupe (voir le

chapitre III de [1], notamment le théorème 3.3.28).

3. Résultats positifs en dimension un

THÉORÈME 3. Soit E un EBD dans P/(R), ayant les propriétés (Pq) et

(Pi); soit m > 0. Alors

E W-m(Wm(E)) f E' - W~m(Wn\E')).

Si de plus E satisfait (P2), alors les échelles de Sobolev d'origines E et E'
sont invariantes.

Preuve. D'après le lemme 1, l'opérateur défini par

poo
Tf —

J0

est borné sur E. Puisque {Tf)'f - Tf pour / e D(R), la même propriété
est vraie au sens des distributions quel que soit f e E. On en déduit aussitôt
que Tmestun opérateur borné de E dans W"'(E). Si / G E et g =-
il vient

m

j=0

de sorte que / appartient à W-'n{Wm{E)). On peut aussi définir T sur à
l'aide de la formule
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poo
C Tf,g)=/ e;J0

cela nous donne Ef W~m(Wm(Ef)) ; on applique alors le théorème 2 et la

proposition 1 pour obtenir E Wm(W~m(E)) et E! Wm(W-m{E')). Il nous
reste à vérifier la propriété (5). Pour m > k, on applique la première partie
de la preuve à l'espace Wm~k(E), ainsi que la proposition 1; il vient

Wm~k(E) W~k (Wk(Wm~k(E))) W~k{Wm(E)) ;

par ailleurs:

Wm~k(E) (Wk(W~k(E))) Wm(W~k(E)).

Le cas m < k se traite de manière analogue. Le même raisonnement s'applique
à E'.

Remarque. Le théorème 3 se retrouve aussi dans le cadre des Co -groupes
([1], théorème 3.3.23).

4. Résultats négatifs en dimensions supérieures

4.1 La propriété de Mitiagin-Ornstein

Définition 3. Soit E un EBD dans V(R2). On dit que E possède

la propriété de Mitiagin-Ornstein si, pour toute distribution /, les conditions

djf e E j 1,2 ; k — 0,1,2) impliquent d\Ô2f G E.

PROPOSITION 5. Si E est un EBD dans Uf(R2), alors Wl(E) possède la

propriété de Mitiagin-Ornstein.

Preuve. Supposons dkf G Wl(E), pour j 1,2 et k 0,1,2. On a

en particulier 82f G Wl(E), d'où 8182f G E. La condition ôjf/ G Wl{E)
implique

3i(ôiÔ2/) 02(ô?/)e£;

on obtient de même ô2(ôiô2j0 £• Ainsi ôi<92/ appartient à WUE).
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4.2 Preuve du théorème 1

Nous procéderons en trois étapes.

1. Les espaces L*(R2) et L°°(R2) ne possèdent pas la propriété de

Mitiagin-Ornstein (voir [5] et [6], ainsi que l'article de Boman [2]). D'après

la proposition 5, cela suffit pour établir que L^R2) et L°°(R2) sont des sous-

espaces propres de ^(W^L^R2))) et WW_1(£°°(R2))) respectivement.

2. Pour vérifier la propriété (i) en dimension n > 3, on considère

et v une fonction non nulle appartenant à V(Rn 2). On voit aisément que la

fonction f u®v vérifie

La propriété (iii) se prouve de la même façon.

3. On applique enfin le théorème 2 et la proposition 1, pour en déduire

(ii) et (iv).

4.3 Contre-exemples explicites

Nous allons voir qu'il est possible de produire des contre-exemples pour
les non-inclusions (i) et (ii) sans invoquer le théorème de Mitiagin. Il est clair
qu'il suffit de travailler en dimension 2.

u G W/1(VÉ_1(Lco(R2))) \L°°(R2)

/ G Wl(W-\L°°(Rn))) \L°°(R").

Soit

u(x, y) 2x — x 1og(x2 + y2) — 2y arctan

On a u G Lc et

du oo— (x,y) - log(x2 + y1) ;

si on pose /(t, y) —p(x, y) log(x2 +y2), il vient

de sorte que / appartient à W l(L°°(R2)). Soient

u(x, y) —2 arctan (D1 W(-X' ^ ~~gbcl0g^2 + y2^



334 G. BOURDAUD ET M. WOJCIECHOWSKI

Les fonctions v et w appartiennent à L°° et on a

df d(pv) dp
ai ^T + w~vWy-

d'où — G W_1(L°°(R2)). Un calcul analogue montre que —- appartient
ox oy

à W-1(L°°(R2)). Finalement / appartient à W^W-1^00^2))) mais non à

L°°(R2).
Soit g une fonction intégrable positive telle que

fg +00,
JR2

par exemple g(x,y) — —. Si l'on avait g G
(xl + y1) log (x2 + y1)

la proposition 4 et le théorème 2 nous donneraient

I <0, <?**/}[ < \\<pk*f\\ W^W-^L00)) NI
d'où

Jgivk *f) < ll/llw1^-1^00))!^!!^-1^1^1))*

puisque <£* * / tend vers / presque partout, le lemme de Fatou nous
conduirait à:

J fg <+00,

ce qui contredit le choix de g.

4.4 Les plongements de Sobolev sous-jacents

La non-inclusion Z3(R2) <f_ W~l (W^L^R2))) peut s'interpréter de manière

fort élémentaire en la factorisant à travers des plongements de Sobolev. On

commence par observer que

(7) Wl (Ll(R2))C L2(R2)

(ceci parce que — j voir par exemple [7], chapitre 5, théorème 2).

On dispose en fait d'un plongement de Sobolev un peu plus général que (7),
à savoir: BV(R2)C L2(R2) ;

BV(R2) est l'espace des fonctions dont les dérivées premières sont des mesures
bornées sur R2. Dès lors l'inclusion

L'(R2) C W~1(w\Ll(R2)))
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impliquerait a fortiori

Ll(R2) C W~l(L2(R2))

ou encore, en passant aux duaux :

W1 (L2(R2)) C L°°(R2) ;

or Wl (L2(R2)) est l'espace de Sobolev critique, qui s'injecte dans BMO(R2)

et non dans L°°(R2).

5. Pour aller plus loin

Depuis les travaux de Stein et Weiss, l'espace de Hardy Hl(Rn) et son

dual BMO{R") sont considérés comme des substituts naturels de Ll(Rn) et

L°°(R77). BMO(R") n'est pas, à proprement parler, un EBD puisque, pour sa

norme naturelle, c'est un espace de Banach de fonctions modulo les constantes.

Aussi allons-nous considérer les versions locales de ces espaces fonctionnels,
introduites par D. Goldberg [4] sous les notations hl(Rn) et bmo(R") et

rattachés depuis à la grande famille des espaces de Lizorkin-Triebel ; on
a en effet hl(Rn) — F®2(R") et bmo(R") F^o2(R/î) (voir [8]). Puisque les

opérateurs pseudo-différentiels d'ordre zéro sont bornés sur les Fspq, on obtient

Wm(E) (I-A)-'"/2(£) pour E h\R")et R"), de sorte que
les échelles de Sobolev ayant ces deux espaces pour origine sont invariantes.
Cela va nous conduire à une version précisée du théorème 1 :

Théorème 4. Pour n> 1, on a:

L°°(R") C ^'(^-'(L^R"))) C

h\R")C W~l(Wl(Ll(Rn)))C R"),

et ces quatre inclusions sont strictes.

Preuve. Compte tenu des théorèmes 1 et 2, il suffira d'établir que ^(R77)
est un sous-espace propre de W^' CW'iT'fR")). Quelques rappels sur /?' seront
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d'abord utiles. Soit ï/j G V(R*) une fonction telle que

V^O : ^^0=1;
jez

on dispose de l'équivalence de normes

\UWhl(R) m \\U\\l + [I 1^^ ^D)(u)\ ^

j> 1

(voir par exemple [8]). Posons

M'<£.//) pmtv)(eer'.i/ÊR);
alors ¥ G D(Rn \ {0}) de sorte que, pour une certaine constante C > 0, on a

(8)

j> 1

i2\ 1/2

i
< C ||/||Äi(R«) •

Soit 6 G cS(R" l) la fonction dont la transformée de Fourier est p ; soit w

une fonction intégrable sur R, n'appartenant pas à hl(R) ; soit enfin

/(x,y) 0(x)u(y) (x G Rn 1

y G R).

D'après le théorème 3, il existe v G W'(L'(R)) tel que w v + v' ; cela nous

donne

/ 6 (g) v + 9„(0 (8) v),

avec 0®v G Wrl(L1(Rn», d'où / G W-1(W1(L1(RW))). Puisque p(2^/)p(0
p(£) pour j > 1, il vient

VP(2^D)(/) (9 0 i/j(2~jD)(u).

Si la fonction / appartenait à hl(Rn), l'estimation (8) nous donnerait

2\ !/2

2>1

d'où w G /^(R), ce qui contredit l'hypothèse.

< +oo,
î
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6. Questions ouvertes

1. Pour autant que nous le sachions, la non-inclusion

L°°(R2) £ W"1 (w'tL^R2))),

ne se ramène pas, comme c'est le cas pour Ll, à des observations élémentaires

sur les plongements de Sobolev.

2. Le théorème 4 laisse ouvert le problème d'une description explicite

simple des espaces fonctionnels et VP_1(W1(LI(R,?))).

3. Dans le même ordre d'idée, on vérifie facilement que les EBD

Em Wm(W~m(L°°(Rn))) (m > 0)

forment une suite croissante de sous-espaces de bmo(Rn). Cette suite est-elle

strictement croissante Peut-on décrire simplement le sous-espace (Jm>o

Des questions homologues se posent pour la suite décroissante

W-fn(Wm(L](Rn)) (m > 0)

de sous-espaces de Ll(R").

4. On peut conjecturer une réciproque de la proposition 5 : si E possède
la propriété de Mitiagin-Ornstein, alors E Wl(W~l(E)) ; cela reviendrait
à dire que est le plus petit EBD incluant E et possédant la

propriété de Mitiagin-Ornstein.

5. Peut-on trouver une «bonne» échelle de régularité d'origine L1 Pour
préciser la question, désignons par E la classe de tous les EBD de V(Rn).
Existe-t-il une famille (Sm)mez d'applications de E dans S telle que:

• pour tout E G £, (Sm(E))mez est une échelle de régularité d'origine E,
• sr+k(ü(ß»)) Sm(Sk(Ll(Rn))) pour tout (m,k) G Z2
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