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DEFINITION 6. K*(V,F) = I'(V, F)/~. Addition in K*(V, F) is by disjoint
union of K-cocycles. The natural homomorphism of abelian groups

K'(V,F) — K; C*(V,F)

is defined by
(Z,8) = Z,8).

CONJECTURE. pu: K*(V,F) — K.C*(V,F) is an isomorphism.

REMARK 7. Calculations of M. Pennington [25] and A.M. Torpe [32]
verify the conjecture for certain foliations.

Given (V,F), let BG be the classifying space of the holonomy groupoid
G. Since v is a G-vector bundle on V, v induces a vector bundle 7 on BG.
As in §3 above there is then a natural map

K7(BG) — K*(V,F).

PROPOSITION 8. The natural map K.(BG) — K*(V,F) is rationally
injective. If G is torsion free then K] (BG) — K*(V,F) is an isomorphism.

REMARK 9. Examples show that for foliations with torsion holonomy, the
map K](BG) — K*(V,F) may fail to be an isomorphism.

THEOREM 10. If F admits a C°° Euclidean structure such that the

Riemannian metric for each leaf has all sectional curvatures non-positive,
then

w: K*(V,F) — K.C*(V, F)

IS injective.

10. FURTHER DEVELOPMENTS

The theory outlined in §§1-8 can be developed in various directions. We
very briefly mention two of them here.

Let A be a C*-algebra. If G is a Lie group and X is a G-manifold, then
using A as coefficients there is both a geometric and an analytic K-theory for
(X, G). The analytic K-theory is the K-theory of the C*-algebra (Co(X)x G)®A .
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The geometric K-theory is obtained from K-cocycles (Z,&,f) where Z,f are
as in §2 and ¢ = {Ey = E;} uses G-vector bundles Ey, E; on T*Z®f*T*X
such that the fibres of E; are finitely generated projective modules over A.
Denote this geometric K-theory by K*(X,G;A). The natural map

K'(X,G;A) — Kil(Co(X) x G) ® A]

is defined by using elliptic operators in the spirit of Miscenko-Fomenko [22].
We conjecture that this natural map is an isomorphism.

In the notation of Kasparov [18] the group denoted here by K,[Co(X) % G]
is KK(C, Co(X) x G). For the K-homology group KK(Cy(X) x G,C) there
is a geometric group K.(X,G) which is the G-equivariant version of the
topologically defined K-homology of [9]. Using transversally elliptic operators
[2] one then obtains a natural map

K.(X,G) — KK(Co(X) 1 G,C).

We conjecture that this map is injective and that its image is dense (with
respect to the natural topology) in KK(Cy(X) % G, C).
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PROPOSITION 1 (A. Borel [10]). Let G be a Lie group with myG finite
and maximal compact subgroup H. If Z is any proper G-manifold then there
exists a G-map from Z to H\G.

In §5 above this was proved for G a connected semi-simple Lie group
with finite center. By the argument of §5, Borel’s result implies:

COROLLARY 2. Let G be a Lie group with myG finite. For any G -manifold
X there is an isomorphism of abelian groups

KL(X x (h\g)*) — K'(X,G)  (i=0,1).
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