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IDEAL SOLUTIONS OF THE TARRY-ESCOTT PROBLEM
OF DEGREE FOUR AND A RELATED DIOPHANTINE SYSTEM

by Ajai CHOUDHRY

ABSTRACT. In this paper, the complete ideal symmetric solution in integers of
the Tarry-Escott problem of degree four, that is, of the system of simultaneous
equations Zlea}‘ = Zleb}', r = 1,2,3,4, has been obtained. In addition, a
parametric ideal non-symmetric solution has also been obtained, and this non-symmetric
solution has been used to obtain a parametric solution of the diophantine system

S ai =30, b, r=1,2,34 and 6.

1. INTRODUCTION

The Tarry-Escott problem of degree k consists of finding two sets of
integers ai,ap,...,a; and by, by, ..., b, such that

(1) ia}':ibf, r=1,2,... k.
i=1 i=1

There is a well-known theorem [6, p.614] due to Frolov according to
which the relations (1) imply that

2) > (Ma;+K) =Y (Mb;+K), r=1,2,...k,

i=] i=1

where M and K are arbitrary integers. That is, if (aj,ay, ..., a5 by, by, ..., by)
1s a solution of the system (1), then

(Ma, +K,...,Ma;,+K;Mb, +K, ... Mb, +K)

is also a solution of (1). This theorem is easily established by using the binomial
theorem. If one solution of the system (1) is obtained from another through
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the application of this theorem, the two are called equivalent solutions. When
we speak of distinct solutions, we refer to solutions that are not equivalent.

It follows from Frolov’s theorem that for each solution of (1), there
is an equivalent one such that >, a4 = 0 = ) ;_,b; and the greatest
common divisor of all the integers a;,a;,...,a, and by,b,,...,bs is 1, that
is, ged(a;, b;)) = 1. This is said to be the reduced form of the solution.

It 1s easily established [6, p.616] that for a non-trivial solution of (1)
to exist, we must have s > (k + 1). Solutions of the system of equations
(1) are called ideal if s = (k+ 1) and are of particular interest in several
applications [6].

In order to reduce the number of equations of the system (1), the following
simplifying conditions are often imposed:

(3) ai=-b;, i=12,...,5, for s odd,
or
4) a1-i=—-a;, bsp1_i=-b;, i=1,2,...,5/2, for s even.

Solutions of (1) subject to the conditions (3) or (4) are called symmetric solu-
tions. The conditions of symmetry, together with the condition gcd(a;, b;)) =1,
ensure that such solutions are in reduced form. Solutions of (1) obtained by
the application of Frolov’s theorem to a symmetric solution are also considered
symmetric as they are equivalent to a symmetric solution. Solutions of (1)
that are not symmetric are called non-symmetric.

The complete ideal solution (whether symmetric or non-symmetric) of the
Tarry-Escott problem of degrees 2 and 3 has been given by Dickson [4, pp. 52,
55-58] but for higher degrees the complete ideal solution is not known. When
4 < k < 7, parametric ideal solutions of (1) are known but these are all
symmetric [2; 3, pp.304-305; 5; 7, pp.41-54]. However, these parametric
solutions do not even give the complete ideal symmetric solution for any k£ > 4.
Numerical ideal symmetric solutions of (1) have been given by Letac [8] for

= 8, by Letac as well as Smyth [10] for k¥ = 9 and recently a numerical ideal
symmetric solution for k£ = 11 was discovered through the combined efforts of
Nuutti Kuosa, Jean-Charles Meyrignac and Chen Shuwen [9]. Parametric ideal
non-symmetric solutions of (1) are not known for any k > 4. A numerical
ideal non-symmetric solution has been given by Gloden [7, p.25] when k = 4.
Moreover, the aforementioned numerical ideal solutions for £ = 9 given by
Letac and Smyth provide non-symmetric ideal solutions for k£ =4 [1, p.10].

It is interesting to observe that ideal non-symmetric solutions of (1) can
be used to generate solutions of the system of equations
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k+1 k+1

(5) Soa=) b, r=12...,kk+2
=]

i=1
This follows from a theorem given by Gloden [7, p.24]. Symmetric ideal
solutions cannot be used effectively for this purpose as the solutions obtained
by applying this theorem hold trivially either for all odd or for all even values
of r according as k is odd or even.

In this paper, we will obtain the complete ideal symmetric solution of
the Tarry-Escott problem of degree four as well as a parametric ideal non-
symmetric solution of this problem. We shall use the non-symmetric solution
to obtain a parametric solution of the system of equations

5 5
(6) Yoai=Y b, r=1234s6
i=1 =l

Parametric solutions of the system of equations (6) have not been obtained
earlier.

2. THE COMPLETE IDEAL SYMMETRIC SOLUTION
OF THE TARRY-ESCOTT PROBLEM OF DEGREE FOUR

To obtain the complete ideal symmetric solution of degree four, we have
to obtain a solution of the system of equations

(7) doai=>"b,  r=1,2,3,4,

=] i=1

where a; = —b;, i = 1,2,...,5. The four equations of the system (7) now
reduce to the following two equations:

(8) art+a+ay+a4+as =0
and
) A+d+ad+d+a=0.

Thus, to obtain the complete symmetric solution, in reduced form, of the
diophantine system (7), we must obtain the complete solution in integers of
the equations (8) and (9) such that ged(ay,az,a3,a4,as) = 1.

The equations (8) and (9) have trivial solutions in which one of the five
integers is zero while the remaining four integers form two pairs, the sum
of the integers in each pair being zero, as for example, (x;,x,, —x|, —xy,0).
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Moreover, it is readily seen that if any solution of (8) and (9) is such that one
of the five integers x; is zero, or the sum of any two of the five integers x; is
zero, then the solution must be trivial. Further, trivial solutions of equations
(8) and (9) lead to trivial symmetric solutions of (7).

We will now find the complete non-trivial solution of equations (8) and
(9) such that gcd(ay,as,as,a4,as) = 1. Let x;, i = 1,2,...,5 be any such
non-trivial solution of (8) and (9) so that gcd(x;, x3,x3,x4,%5) = 1 and the x;
satisfy the equations

(10) X1 +x2+x3+x1+x5=0,
and
(11) X5+ +x+xg+x=0.

As our solution is assumed to be non-trivial, we must have x; # 0, x; # 0,
(X2 +x3) # 0 and (x; + x4) # 0 and, accordingly, there must exist non-zero
integers p,q,r and s such that

(12) px1 = q(xz + x3),
and
(13) rx; = s(x; + x4) .

Solving the linear equations (10), (12) and (13), we get
x3 = (px1 — qx2)/q,

(14) x4 = (rxy — sx1)/5,
xs = —(psx1 + qrxz)/(gs) .

Substituting these values of x3, x4 and xs in equation (11), we get, on
simplification,

(15) =30 {0 +5) — ¢ r)ba + {pa(r? = 5°) + ¢°r' ] /(g°s") = 0.
As x1xp # 0, it follows from (15) that

x1 = p Hpg(r =) +4°r*},

X = —p @ s(r + 5) — ¢°rs)},

where p is some rational number. Substituting these values of x;, x, in (14),

(16)

we get
x3 = p H{p*r(r + 5) + pgr* — q’rs},
(17) x4 = —p Hp*r(r + ) + pa(r* — 7},
xs = p {p*s(r +5) — pgr* — ¢*r’}.
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Thus, a given non-trivial solution x;, i =1,2,...,5 of equations (8) and 9)
must be of the type given by (16) and (17) where p,q,r and s are certain
integers and, as we assumed gcd(xy, x2,x3,X4,%s) = 1, the rational number p
must be an integer such that it ensures that ged(xy, X2, X3,X4,%s5) = 1.

In accordance with the pattern of equations (16) and (17), we now write

ay = p~Ypa(r* — ")+ ¢’}
ar = —p"l{(pzs(r +5) — ¢*rs)},

(18) as = p {p*r(r + 8) + pgr* — ¢’rs},
as = —p~ H{p*r(r + ) + pg(r* — sM)},
as = p~{p’s(r + ) — pgr* — q’r’},

where p,q,r and s are arbitrary integers and p is an integer so chosen that
ged(ay, as,a3,a4,as) = 1. It is now readily verified by direct substitution that
ay,a»,as,aq,as as defined by (18) satisfy both the equations (8) and (9). It
has already been seen that any given non-trivial solution of (8) and (9) is
of the type (18), and hence it follows that this is the complete non-trivial
solution of equations (8) and (9).

It now follows that the complete ideal symmetric solution of the Tarry-
Escott problem of degree four is given in the reduced form by a; = —b;,
[ = 1,2,...,5, where aj,ay,as,a4,as are defined by (18) in terms of the
arbitrary integer parameters p,q,r and s while p is an integer so chosen
that gcd(ay,az,as,aq,as) = 1. Symmetric ideal solutions that are not in the
reduced form may be obtained by the application of Frolov’s theorem to the
above symmetric ideal solution.

As a numerical example, when p =1, g=1,r=2, s=1, p =1,
we get, after suitable re-arrangement, the following reduced ideal symmetric
solution of the Tarry-Escott problem of degree 4:

(O (=5 (=1 +T 48 = (=8) + (=T + 1 +5+9", r=1,23,4

Adding the constant 10 to all the terms, we get the following symmetric
solution in positive integers:

U+5"+9" +17 + 18 =2"4+3"+ 11"+ 15 + 19", r=1,2,3,4.
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3. A PARAMETRIC IDEAL NON-SYMMETRIC SOLUTION OF
THE TARRY-ESCOTT PROBLEM OF DEGREE FOUR

We will now solve the equations

(19) ay+a, +as+as+as = by + by + bz + by + bs,
(20) atastastal+al=b+b3+b3+b2+b2,
(21) a+a+ata;+ai="b+b3+bl+b+ b3,
(22) ai + a5 + a3 + ds + ai = b} + b3 + by + b} + b2,

so as to get an ideal non-symmetric solution of the Tarry-Escott problem of
degree four. We write

ar =2px —(E+ 1y, by = 2px + 1y,

ay = 2qx + 1y, by = 2gx — (£ +n)y,
(23) as = rx, bz =rx+(y,

as =sx—(Cy, by = sx,

as = Cy, bs = —(Cy.

We will first choose p,q,r,s,&,m and ¢ such that equations (19), (20) and
(21) are identically satisfied for all values of x and y. In the equation obtained
from (22) by substituting the values of a;,b; as given above, the coefficients
of x* and y* on the two sides are equal, and we will choose p,q,r,s,&,1
and ¢ so as to satisfy the additional condition that the coefficient of xy?
also becomes equal on both sides of this equation. Thus, equation (22) would
reduce to an equation containing only the terms x*y and x?y? and accordingly
it can be readily solved for x and y. These values of x and y together with
the already suitably chosen values of p,q,r,s,&,n and ( substituted in (23)
will give a solution of equations (19), (20), (21) and (22).

When a;, b; are defined by (23), we observe that equation (19) is identically
satisfied. Substituting the values of g;,b; in (20), we note that this equation
will also be identically satisfied for all values of x and y if the following
condition is satisfied:

(24) 2€6+2mp —g) +C(r+9)=0.

Next, we substitute the values of a;,b; as given by (23) in equation (21) and
observe that the coefficients of x> and y® on both sides are equal. Equating
the coefficients of x?y and xy> on both sides of this equation, we get the
following two conditions :

(25) AE+2m@P* —¢*) + (P +57) =0,




IDEAL SOLUTIONS OF THE TARRY-ESCOTT PROBLEM 319

and

(26) 26+ 2mp—q) — Cr+Cs=0.

Finally, in the equation obtained by substituting the values of a;, b; in (22),
we equate, as already discussed, the coefficients of xy> on both sides to get
the additional condition:

(27) 2E +3 N+ + 20—+ Cr+5)=0.

We now proceed to solve equations (24), (25), (26) and (27). Equations
(24) and (27) may be considered as two linear equations in the two linear
variables (p —¢) and (r+s), and they will be consistent only if &, n and (
satisfy the condition

E+2)E+én+n° =) =0.

Taking (¢ + 27) = 0 leads to trivial solutions, so we will choose &, n and
¢ such that

(28) E+ént+n' =0,
The complete solution of (28) is readily found to be
(29) £ = 2mn — m°, n=m?— n, C=m?—mn+n®,

Next, we solve equations (24) and (26) for r and s, and substitute their values
in equation (25) which now has a linear factor (p — ¢) that can be ignored
and then equation (25) is readily seen to be satisfied if we choose p and g
as follows:

p=¢&+2En+6C0 + 2% -2,
q =8 +26n+ €60 +2n¢* + 203
With these values of p and g, we immediately get
r=—4€2¢ — 8n¢ + 4£¢* + 8n¢?,
s = 4E2¢ + 8EnC + 4£¢7 + 8¢

Thus, when &, 1, ¢ are defined by (29), and p, g, r and s are given by
(30) and (31), equations (24), (25), (26) and (27) are all satisfied. With these

values of p,q,r,s,&,m and (, equation (22) reduces, on removing the factor
64x*y(*(§ + 21), to

(6€° +24€7n + 246" 0% — 126%¢> — 4863n¢% — 48¢22C% — 262
—8¢n¢* — 8n*C* + 8C0)x — (36* + 667 — 322 — 6EncY)y = 0.

(30)

€1
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Thus, equation (22) will be satisfied if we choose

(32)

A solution of equations (19), (20), (21) and (22) can now be obtained in
terms of the parameters m and n by taking &, n and ( as given by (29),
substituting these values of &, n and ¢ in (30), (31) and (32) to obtain p,
q, r, S, x and y in terms of m and n, and then substituting the values of
p, g, r,s, &, n, (, x and y in (23). The solution so obtained may, after
simplification and removal of common factors, be written explicitly in terms

x = 3% + 663 — 3¢6%¢* — 6¢6n¢?,
y = 6£° + 24870 + 244 — 126°¢* — 48¢°n¢?
— 4882 PP — 2£7¢" — 8¢t — 8¢t +8¢°.

of the arbitrary parameters m and n as follows:

(33)

a; = 12m'n — 3Tm®n® + 24m’n® + 12m*n* — 20m°n°
+ 15m*n® — 18mn’ + 8n8,

a» = 10m'n — 30m®n? + 54m°n® — 13m*n* — 48m°n’
+ 45m*n® — 14mn’ |

as = 4m® + 6m’'n — 28m°n? + 8m’n® + 66m*n*
—128m°n° + 112m*n® — 48mn’ + 8n®,

as = 4m® — 12m'n + 35m®n? — 55m°n® + 66m*n*
— 65m’n° + 49m*n® — 30mn’ + 8n®,

as = —4m® + 14m’'n — 27Im°n® + 55m°n® — 80m*n*
+ 81m’n’ — 49m*n® + 14mn’ |

by = —4m® + 14m’n — 22m®n* + 10m°n® + 6Tm*n*
— 140m°n> + 113m*n® — 46mn’ + 8n®,

by = 4m® + 8m'n — 45m®n* + 68m°n® — 68m*n*
+72m*n° — 53m*n® + 14mn’ |

by = 20m’n — 55m®n* + 63m’n’> — 14m*n* — 47Tm’n’
+ 63m*n® — 34mn” + 8n®,

by = 2m'n + 8m®n® — 14m*n* + 16m>n®> — 16mn’ + 8n®,

bs = 4m® — 14m’n + 27m®n?* — 55m°n® + 80m*n*

— 81m3n° + 49m*nb — 14mn’ .
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We may apply Frolov’s theorem to the above solution to obtain other non-
symmetric solutions. For instance, an arbitrary constant K can be added to
all the terms a;, b;, i =1,2,3,4,5.

As a numerical example, taking m = 3, n = 1, we get, on suitable
re-arrangement, the following solution:

(—1659)" + 1406" + 2784" 4+ 4025 + 5915"
= (—1675)" + 1659" + 2366" + 4256" + 5865",

where r = 1,2,3,4. Adding the constant 1676 to all the terms, we get the
following solution in positive integers:

17" +3082" + 4460" + 5701" + 75917 = 1" + 3335" + 4042" 4+ 5932" + 7541",

where r =1,2,3,4.

4. THE DIOPHANTINE SYSTEM Zle g = Zle bl, r=1,2,3,4,6

We will now state the theorem given by Gloden [7, p.24] to which a
reference has already been made in the introduction and then apply it to
obtain a parametric solution of this diophantine system.

THEOREM 4.1. If

then
k+1 k41

ST+ =3 "bi+ry,  r=12.. . kk+2,
=1 i=1

where
k41

t=—0 a)/k+1).
i=1

As5 we have already obtained, in the preceding section, a parametric solution
5 . .

of ) i ,aj =3 . b, r=1,2,3,4, adirect application of the above theorem

gives a parametric solution of Zf:l ar = Z?:l by, r=1,2,3,4 and 6. We

multiply the (a;+1), (b;+1), i=1,2,3,4,5 by 5 to cancel out denominators,
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and we rename the resulting expressions as a;, b;, i = 1,2,3,4,5, so that
the parametric solution of the diophantine system

5 5
dar=>"b;, r=1273,4,6
i=1 i=1

may be written as

a; = 4m® — 30m’n + 98m®n? — 34m’n® — Im*n*
— 80m>n° + 97m*n® — 6mn’ — 16n®,

ay = 4m® — 20m’n + 63m°n® — 184m°n> + 116m*n*
+ 60m*n® — 53m*n® — 26mn’ + 24n®

a3 = —16m® + 53mn? + 46m°n® — 279m*n*
4 460m>n® — 388m*n® + 144mn’ — 1618 ,

as, = —16m® +90m’n — 262mbn? + 361m°n’> — 279m*n*
+ 145m°n° — 73m*n® + 54mn” — 16n® ,

as = 24m® — 40m’n + 48m°n® — 189m’n® + 451m*n*
— 585m*n° + 417Tm*n® — 166mn’ + 24n®

by = 24m® — 40m’n + 23m®n? + 36m°n® — 284m*n*
+ 520m°n° — 393m*n® + 134mn’ — 1618,

by = —16m® — 10m’n + 138m®n” — 254m°n® + 391m*n*
— 540m°n> + 437Tm*n® — 166mn’ + 24n8

by = 4m® — 70m’n + 188m®n® — 229m°n® + 121m*n’
+ 55m°n> — 143m*n® + T4mn” — 16n°

by = 4m® + 20m’n — 127mn* + 86m°n® + 121m*n*
—260m°n° + 172m*n® — 16mn’ — 16n®,

bs = —16m® + 100m’n — 222m®n? + 361m°n® — 349m*n*
+225m°n® — 13m*n® — 26mn’ + 24n8 .

As a numerical example, when m =3 and n =1, we get, on removal of
common factors and suitable re-arrangement, the following solution:

1449 4 7654" + 17104" 4 (—5441)" + (—=20766)"
= 8809" 4 16854" + (—641)" + (—4176)" 4+ (—20846)" ,
where r =1,2,3,4 and 6.
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