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304 H. SHORT AND B. WIEST

starts at the tip of D, (i.e. at the same point as I'; N D, and oI;) N D,),
and falls into one of the punctures in the right half of D... By construction,
Yo NV D¢ 1s reduced with respect to o, since both are geodesics, and the first
component of ¢(y,) N D, is even disjoint from o. In the universal cover we
now have that the lifting ¢ of ¢ ends on the circle at infinity, thus separating
ECC into two components, the left one containing the lift of ¢(v,) N D,., and
the right one the lift of v, N D... Thus lifts of these two curves, not being
allowed to intersect any component of dD;. and dD; more than once, go on
to hit different points of 9D,,, with ((7,) staying more to the left than 7, .
This completes the proof of the third case, and thus of Theorem 6.1.  []

Proof of Theorem 3.3 (b). If ~, fills D,, then C(v,) is a total curve
diagram, and thus induces a foral ordering of B,,. By Corollary 6.2, the ordering
of B, associated to the point a € (0, 7) agrees with this ordering. [

Proof of Theorem 3.4(b). For any two geodesics <, and 7yg of finite
type one can work out their associated curve diagrams C(v,) and C(vg). By
Corollary 6.2 it is sufficient to decide whether or not the orderings associated
to the two curve diagrams coincide, which can be done by Theorem 5.2. [

Proof of Theorem 3.5. It only remains to be proved that N, = M,, (where
M, 1s given in Proposition 5.3), 1.e. that every curve diagram is realized up
to loose isotopy as C(vy,) for some geodesic ., « € (0,7). This is left as
an exercise to the reader. L]

7. ORDERINGS ASSOCIATED TO GEODESICS OF INFINITE TYPE

In this section we prove the results concerning orderings of infinite type,
and explain the essential differences between finite and infinite type orderings.

We start by describing in more detail than in Section 3 the structure of
geodesics of infinite type. We define the curve diagram C(v,) associated
to a geodesic of infinite type by precisely the same inductive construction
procedure as in the finite type case. Except for a finite initial segment, the
last arc I'; will lie in some path component D, of D,\NTou...uj—1, the only
difference with the finite type case is that I; goes on for ever, without falling
into a puncture and without spiralling. The closure of I’ inside this critical
component D, is a geodesic lamination; the lamination has no closed leaves,
for such a leaf would have to be the limit of an infinite spiral of I’; (see [17,
Appendix]). All self-intersections of the geodesic v, occur inside the finite
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initial segment up to the entry into the punctured disk D, : in particular, there
are only finitely many self-intersections.

Proof of Theorem 3.3 (c). We are studying the set
:={a € (0.7) | 7o is of infinite type}.

The proof uses standard results from the theory of geodesic laminations and
the Nielsen-Thurston classification of surface automorphisms [35, 17].

That Z has uncountably many elements follows from the fact that there
are uncountably many geodesic laminations of D,. only countably many of
which fall into infinite spirals. A more practical way of seeing this is to
choose arbitrarily a fundamental domain of D, by fixing n geodesic arcs,
e.g. as shown in Figure 1. Thus the fundamental domain 1s a 2n + 1-gon
with one boundary edge corresponding to 9D, and n pairs of boundary
edges which are identified in D,. A segment of the geodesic between any
two sucessive intersections with the boundary of the fundamental domain
consists of an embedded arc connecting different edges of the 2n + 1-gon.
Hence constructing a geodesic of infinite type amounts to choosing an infinite
“cutting sequence” of the geodesic with the boundary arcs of the fundamental
domain. Often the choice will be forced upon us by the requirement that the
geodesic be embedded, but there will be an infinite number of times when
we have a genuine choice. Thus the set of all possible sequences of choices
1S uncountable.

The cutting sequence approach also makes it clear why any neighbourhood
of an a € Z in (0.7) contains points a’ # a of Z as well as 3 € (0.7)\Z.
Given a € (0.7) and € > 0O, there exists an N. € N such that all geodesics
~¢ whose cutting sequences agree with the one of ~, for at least N, terms
satisfy |a — &) < e. Now for any a € Z and € > 0 we can find a geodesic
7o+ Of infinite type whose cutting sequence diverges from the one of v, only
after the N.™ term. On the other hand. we can construct a geodesic ~v3 with
la — 3] < e which fills D, in finite time: just choose it to have a cutting
sequence which agrees with the one of ~, for N, terms. and to then career
off along some path which decomposes D, into disks and once-punctured
disks.

Finally, the last part of Theorem 3.3(c) holds because each of the countably
many elements of B, fixes only a countable number of points a € (0.7) with
the property that ~, fills D,. In order to see this, we note that for irreducible
elements of B, Theorem 5.5 of [5] states that there is only a finite number of
fixed points on the circle at infinity. If an element » of B, 1s reducible, then

e
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we leave it to the reader to check that the result follows from the following
facts :

(1) One can find a maximal invariant system C of disjoint properly
embedded arcs and circles in D, .

(2) If ¢ acts nontrivially on a component of D,\C which is cut in a
nontrivial way by a finite segment of -, then it acts nontrivially on v, (for
if it didn’t then the collection C would not be maximal).

(3) A geodesic vy, that fills D, has to enter every component of D,\C
at least once, and ¢ acts nontrivially either on the first or, failing that, on
the second component of ~y, N(D,\C) (because it cannot act trivially on two
adjacent components of D,\C).

(4) There is a countable infinity of isotopy classes of embedded arcs from
the basepoint of D, to C. [

We recall from the beginning of the section that to every geodesic vy, of
infinite type we have associated a “critical disk” D, which contains most of
the last arc of C(v,). The fundamental property of geodesics of infinite type
which we shall use several times is the following.

LEMMA 7.1. For any geodesic of infinite type -y, and for any € > 0
there exists a geodesic Yo+ with a© € (a, o+ €) such that .+ falls into a
puncture and has no self-intersections inside D..

Proof. 1t suffices to prove the lemma in the special case D, = D,, i.e.
when the geodesic. 7, is embedded. We suppose, for a contradiction, that
there exists ‘ane > 0 such that no g with 8 € (o, o + €) is embedded and
falls into a puncture. Our aim is to reach the contradiction that v, ends in
an infinite spiral.

We continue to use the notions concerning cutting sequences introduced
above: we choose arbitrarily a fundamental domain, and we shall denote by
vk the initial segment of <y, up to its k™ intersection with the boundary
of the fundamental domain. We recall that, given 7, and ¢ > 0, we can
find an N = N, € N such that any geodesic g with ,yzﬁv = N satisfies
|a — B3] < €. We now consider the arc v¥*!: it ends on some boundary arc
of the fundamental domain which we denote a. The orientation of ~y, gives
rise to a notion of the part of a “to the left” and “to the right of” the end
point of Y¥+1. The arc 4/¥*! has an intersection with the interior of the “left”

(8%
part of a, for if this were not the case we could obtain an embedded arc g
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with 3 € (o, + €) by adjoining to the end point of N an arc falling into
the puncture at the left end of a; this would contradict the hypothesis. Thus
it makes sense to define T' C D, to be the union of vY ! and a segment of
a from the end point of v¥*! to the left, up to the next intersection with
ANF1 (see Figure 10).

FIGURE 10

The two possible shapes of I', and (dashed) the resulting geodesic vq

We now observe that D,\I" has two path components, each containing at
least one puncture; moreover, 7y, cannot intersect any geodesic arc connecting
two punctures in the same component, because the first time it did we could
drop it into the puncture at the left end of the arc and obtain a contradiction
as before. It follows that ~y, has to spiral along the boundary of one of the
components of D,\I". [

PROPOSITION 7.2. All orderings, even partial ones, arising from geodesics
Yo Of infinite type are non-discrete.

Proof. We shall prove the following stronger statement: for any ¢ > 0
there exists an element ¢ € MCG(D,) = B, such that v(a) € (o, @ + €).

We choose a™ as in the previous lemma. We consider the boundary curve
7 of a regular neighbourhood of 0D, U v,+ in D.. This curve 7 is disjoint
from .+, while any curve isotopic to 7 necessarily intersects -y, . Thus for
the positive Dehn twist T along 7 we have that T(a) > « (by Proposition
2.4), and that T(at) = o™ . It follows that T(a) € (o, ™) C (o, v +¢€). [

Proof of Theorem 3.4(a). Given a geodesic -, of finite, and a geodesic

7s of infinite type, our aim is to prove that -y, and g cannot induce the
same orderings of B, .
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As seen in Corollary 6.2, orderings arising from geodesics which fill the
surface in finite time are the same as orderings arising from total curve
diagrams, which are discrete by Lemma 4.5. By contrast, we have from
Proposition 7.2 that infinite type orderings are not discrete. This proves
the theorem in the special case where the finite type geodesic fills the
surface.

In the case where the finite type geodesic v, does not fill the surface, we
consider the subsurface D, := D,\NC(,,), i.e. the maximal subsurface with
geodesic boundary which is disjoint from -, . We observe that D, is a disjoint
union of disks, each containing at least two punctures. Any homeomorphism
¢ of D, with support in D, has the property that (o) = «.

If Do, Ny # @ then there exists a homeomorphism ¢ with support in
D, such that o(8) # 3, and it follows that the orderings induced by « and
(G are different.

If, on the other hand, D, N~z = <, then we squash each component of D,
to a puncture; the result is a disk with say m punctures, where m < n, which
we denote D,,. We now consider the subgroup BY of B,, = MCG(D,,) of all
mapping classes which fix those punctures of D,, that came from squashed
components of D, . This is a finite index subgroup of B,,, and the orderings
‘of B, determined by o and (3 induce quotient orderings on B! . Another
way to describe these quotient orderings is to repeat the Thurston-construction
for the disk D,, : one can equip D,, with a hyperbolic metric, and then the
geodesics 7y, and g project to quasigeodesics in D,,. These quasigeodesics
determine points at infinity of the universal cover of D,,, and hence give rise
to orderings of B, .

The geodesic in D,, which is homotopic to the projection of v, is again
of finite type; the crucial observation now is that it fills D,,, so that the
quotient ordering on B is discrete by Lemma 4.5. Similarly, a geodesic
in D,, homotopic to the projection of g is again of infinite type, hence
induces, by Proposition 7.2 a non-discrete ordering on B, , and thus also on
the finite-index subgroup B . So the «- and (-orderings on B, give rise to

different quotient orderings on B’ , and are therefore different.  []

As seen above, every geodesic of infinite type gives rise to a curve diagram
“of infinite type”, which is like a curve diagram of finite type, except that the
arc with maximal label is, up to isotopy, an infinite geodesic which does not
fall into a puncture or a spiral. All but a finite initial segment of this arc lies
in the “critical disk” D.. There is an obvious generalisation of the notion of
loose isotopy :
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DEFINITION 7.3. Two curve diagrams of infinite type are loosely isotopic
if they are related by (1) continuous deformation, i.e. a path in the space of
all curve diagrams of infinite type; and (2) pulling loops around punctures
tight.

This is exactly the same as in the finite type case, except that no “pulling
loops around punctures tight”-procedure is defined for the last arc. We are
now ready to state and prove the main classification theorem for orderings of
B, of infinite type.

THEOREM 7.4. Two geodesics v, and g of infinite type give rise to the
same (possibly partial) ordering of B, if and only if their associated curve
diagrams C(v,) and C(vyg) are loosely isotopic.

Proof. By the results in the previous sections, it suffices to prove that
two embedded geodesics v, and g of infinite type give rise to the same
ordering of B, if and only if 5 = A*(«) for some k € Z, i.e. if 7, and 3
are related by a slide of the starting point around 0D,.

The implication “<=" is clear. Conversely, for the implication “=", we
suppose that v, and g are not related by a slide of the starting point,
and without loss of generality we say a > (. Our aim is to construct a
homeomorphism which is positive in the «- and negative in the (-ordering,
i.e. which sends o “more to the left” and § “more to the right”. Our argument
will be a refinement of the proof of the implication “=" of 5.2(a).

By Lemma 7.1 we can construct embedded geodesics ~y,+ and 7yg+ which
fall into punctures, and lie an arbitrarily small amount to the left of ~,
respectively 3. We define the curves 7,+ and 75+ to be the geodesic
representatives of the boundary curves of regular neighbourhoods in D, of
0D, U~q+ and 0D, U g+ respectively. We denote by T, respectively Tg+
the positive Dehn twists along these curves. Our desired homeomorphism will
be of the form T_f o Tg+, with carefully chosen values of o and 8*, and
k € N very large.

We also define the two-sided infinite geodesic 7, to be the geodesic
which is disjoint from -y, , and isotopic to the boundary of a neighbourhood
of v, UdD, in D,. More formally, in the universal cover D we consider
two liftings of ~,, namely 7, (which starts at the basepoint of D}), and the
liftigg whose starting point also lies on I and is obtained from the basepoint
of D, by lifting the path once around 0D, . The end points of these geodesics

—— e
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lie on the circle at infinity, and 7, is just the projection of the geodesic
connecting them.

Since 7, and g are not loosely isotopic, we have that vz intersects 7.
By choosing B sufficiently close to 3 we can now achieve that the initial
segments of g and ~yg+ up fto their first point of intersection with 7, are
isotopic with end points sliding in 7, . This gives our choice of /T, and it
remains to choose o and k.

The crucial observation concerning 7, is that it can be arbitrarily closely
approximated by the curves 7.+, by choosing a™ sufficiently close to «.
More precisely, in the universal cover D, we consider the preimages of 7, and
of 7,+. Each of them has infinitely many path components; we choose one
distinguished component for each, namely the first ones that 5 intersects. Our
observation now is that as ot tends to «, the end points of the distinguished
component of the preimage of 7.+ tend to the end points of the distinguished
component of the preimage of 7.

We now turn to the choice of at. By Proposition 2.4 we have that
Tg+(a) > a. By Lemma 7.1 we can now choose a™’ close to a such that
Tg+(a) > a™ > «. By possibly pushing o™ even closer to «, we can
in addition insist (by the observation concerning 7, above) that the initial
segments of g and g+ up to their first point of intersection with 7.+ are
also isotopic with end points sliding in 7.+ . This gives our choice of a™.

We have arrived at the following setup: we have the three points
Bt = Tge(BY) > Tg+(B) > B in OD,\II, and they all lie between the
two end points ¢; and 6, of the distinguished lifting of 7.+ (here the indices
[ and r stand for “left” and ‘“right”, so 6, > 6,). For any point 6 with
o > 6 > 6, we consider the action of the positive Dehn twist 7,+ on the
geodesic 5. We observe that the limit limy_, o T;f(&) = 6,. In particular for
6 := [ it follows that for sufficiently large & we have T;f (81) < . This
gives our choice of k.

To summarise, we have
T foTgi(a) >T e =at >a
and
T f o Tge(B) < Tof o Tpr (B7) = T £(8) < B,
ie. T;f o Tg+ 1is positive in the -, but negative in the [-ordering. [

Proof of Theorem 3.4(c). This is an immediate consequence of Theo-
rem 7.4. [J
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