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298 H. SHORT AND B. WIEST

For every total curve diagram in D, there are two possibilities :

(a) the first arc of the curve diagram ends in a puncture or can be pulled
tight so as to end in a puncture;

(b) the first arc cuts D, into two disks, each of which contains at least
two punctures.

For case (a) we notice that the first arc can be turned into the horizontal arc
from —1 to the leftmost puncture, by an action of some appropriate element
of B,. There are now precisely M,_; orbits of loose isotopy classes of curve
diagrams of the remaining n — 2 arcs in the n — 1-punctured disk D, (the
first arc). So case (a) gives a contribution of M,_; orbits.

The argument for case (b) is similar: the action of an appropriate element
of B, will turn the first arc of any curve diagram of type (b) into the vertical
arc, oriented from bottom to top, having k punctures on its left and n — k
on its right, for some k € {2,...,n—2}. In this case, there should be k — 1
arcs on the left and n — k — 1 arcs on the right of the first arc, so there are
(Z:?) ways to distribute the remaining n — 2 arcs over the two sides. Finally,
there are M) respectively M,_; orbits of loose isotopy classes of total curve
diagrams on the disk on the left respectively on the right. [

6. REPLACING FINITE TYPE GEODESICS BY CURVE DIAGRAMS

In this section we prove the main theorems on orderings of finite type.
The strategy is to associate to every geodesic of finite type a curve diagram
such that the (possibly partial) orderings arising from the geodesic and the
curve diagram agree. Thus we obtain, via curve diagram orderings, a good
understanding of finite type orderings.

Proof of Theorem 3.3 (a). If D,\7, has a path component which contains
at least two holes, then we can push the boundary curve of this path component
slightly into its interior, to make it disjoint from 7,. A Dehn twist along
such a curve will be a nontrivial element of B,, and act trivially on ~,. [J

We now define the curve diagram C(vy,) associated to a geodesic vy, of
finite type. It is a subset of ., more precisely a union of segments of -y
which start and end at self-intersection points. The diagram will be disjoint
from the punctures, except that the last arc may fall into a puncture. For
simplicity we shall write I for C(v,) and, as before, I'gy...ui—1 for j;lo Iy.




ORDERINGS OF MAPPING CLASS GROUPS 299

FIGURE 7

A geodesic and (in bold line) its associated curve diagram

The definition is inductive. We define I'y = 0D,,. Now suppose that we
have already found I',...,I;—;. So every path component of D, \Tou.-ui—1
is a disk containing at least one puncture. We put down a pencil at the end
point of I';_;, start tracing out -y,, drawing an arc T} (with “p” standing
for “potential”’, because I? is potentially the new arc I7;). We continue
drawing either up to the next intersection with T'oy...u;—, or up to the first
self intersection of IV, or until v, falls into a puncture, whichever comes
first. We now decide whether or not I¥ has cut one of the components of
D, \I'ou...ui—1 1In a nontrivial way, i.e. whether it has either fallen into a
puncture or cut one of the components of D,\I'gy...ui—1 into two, both of
which contain at least one puncture. If yes, we let I'; := I'Y, and have finished
the induction step. If not, we rub out I, and start a new IY at the next
intersection point of 7, with D,\Tou...ui—1. (This intersection point is just
the end point of the previous I}, unless this endpoint is in the interior of the
previous IY . Note that in this latter case not only IV, but the entire segment
of the geodesic 7, up to its next intersection point with I'g....;—; cuts the
disk in a trivial way.) |

There 1s one special rule: if in the construction process we obtain an
arc IV which spirals ad infinitum towards a simple closed geodesic, then we
define I to be the arc with end point in its own interior containing I} in a

regular neighbourhood, as shown in Figure 8 (this arc is unique up to loose
1sotopy).
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FIGURE &

The curve diagram associated to a geodesic which spirals towards a closed geodesic

Since at most n — 1 arcs can be constructed in this way, the process
terminates after finitely many steps. We observe that the curve diagram C(7,)
is total if and only if the geodesic ,, fills D, . More generally, two punctures
are in the same path component of D,\7, if and only if they are in the same
path component of D,\C(v,). We also note that for every geodesic 7, and

¢ € B, we have C(0(7a)) = ©(C(7a)).

THEOREM 6.1. For any o € (0,7) and p € B, we have:
)
(a) if the curve diagrams ¢(C(7,)) and C(vy) are isotopic then p(a) = «;

(b) if (C(va)) > C(vy) (in the curve diagram sense) then we have p(a) > «
in R.

COROLLARY 6.2. For every geodesic -y, of finite type (where o € (0, 7)),
the ordering of B, associated to o by Remark 1.2(1) coincides with the
ordering associated to the curve diagram C(v,) by Definition 4.2.

Proof of the theorem. We shall need a generalisation of the concept of re-
lative “reduction” of two simple curves in D,, to the case where one of the two
curves is authorised to have self-intersections, but no D-disks with itself. For
instance, we shall be interested in the case where one of the two curves is a sim-
ple geodesic, and the other is a homeomorphic image of a non-simple geodesic.

Suppose that C is a disjoint collection of simple closed geodesics and
properly embedded geodesic arcs connecting distinct punctures in D,,. Then
we Say that () 1s reducible with respect to C if there are D-disks enclosed
by ¢(7v,) and C, i.e. if there are finite segments of ¢(7,) and of C with the
same start and end points which are homotopic with fixed end points. If ()
is not reducible then we say it is reduced with respect to C. Equivalently,
any component of the preimage of ¢(v,) in the universal cover D; intersects
any component of the preimage of C at most once.
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LEMMA 6.3. One can pull p(v,) tight with respect to C, Le. there exists
an isotopy of @ which makes p(v,) and C reduced with respect to each
other.

Proof. The proof is an easy exercise — it is in fact similar to the proof
of the “triple reduction lemma” 2.1 of [9]. [

We need some more notation. We still write I" for C(vy,), denote by j
the number of arcs of I', and consider the partial curve diagrams I'oy...ui—1
for i € {1,...,j}; all their arcs are geodesics. Every path component of
D,\T'gu...ui—1 contains at least one puncture in its interior. The boundary
curve of each component with at least two punctures is isotopic to a unique
simple closed geodesic, which bounds a disk (with these punctures in its
interior) in D,. Removing all these disks from D, yields a planar surface
with a number of geodesic boundary components (one of them being 9D,
the others corresponding to the at least twice punctured components of
D, \Tou...ui—1) and a number of punctures (corresponding to once-punctured
components of D,\I'gu...u;—1). We denote this surface by NTgy..ui—p; it
is a regular neighbourhood of 0D, U I'g....ui—; in D,, and contains the
complete initial segment of the geodesic 7, up to the starting point of the
arc I'; C v,

We are now ready to prove the theorem. For part (a) suppose that we are
given « € (0,m), and ¢ € B,, and that the curve diagrams I' and o(I") are
isotopic. Then we can modify the map ¢ by an isotopy which fixes D, such
that the restriction ¢|yr becomes the identity map. But by construction of
I' = C(74), the geodesic v, is entirely contained in NI', and is thus mapped
identically. This proves part (a) of the theorem.

For part (b) suppose that we are given o € (0,7) and ¢ € B,, and that
for some i € {1,...,/} the curve diagrams T'y,....;—; and o(loy...ui—1) are
isotopic, whereas ¢(I';) is “more to the left” than I';. Our aim is to prove
that p(o) > a, Le. that the end points of the liftings of (vy,) and ~y, on
OD,\IT1 = (0, 7) are different, with that of ©(v,) being “higher” in Figure 1.

Firstly, the map ¢ sends I'g....;—1 to a curve diagram which is isotopic
to I'gy...ui—1 ; therefore we can assume, after an isotopy of ¢ which fixes
0D,,, that the restriction ©|Nro.. i, 18 the identity map. Note that -y,
being a geodesic, is already reduced with respect to the collection of

geodesics ONTg...ui—1, and therefore ©(Ye) 18 also reduced with respect
to (9NF0U...U,'_1 = <p(8NFOU...Uf_1).
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Next, we note that the arc I'; will cut precisely one of the components
of D,\NT¢y...ui—1 in two, and leave the other components untouched. This
critical component is an at least twice punctured disk, and we shall denote it by
D.. The preimage of D, in the universal cover D, has many path components,
but we shall be interested in one particular component D, namely the one
which is cut in two by the segment corresponding to I'; C vy, in the geodesic
Yo in Dj,.

We now distinguish three cases: firstly, the arc I'; falls into a puncture
inside D, ; secondly, the arc I'; has its end point in NIgy...ui—1 (either on
['ou...ui—1 or in the initial segment I'; N NTgy...u;—1 of I7;); thirdly, the end
point of the arc I lies in the interior of D, (and then necessarily in the
interior of I7).

The first case is the easiest: by an isotopy of ¢ which 1s fixed outside
D. we can pull oI7;) N D, tight with respect to I'; N D.. The effect of this
isotopy is to make the images of the liftings &(J,)ND. and F, ND, disjoint,
except for the common starting point. Moreover, both liftings run inside D,
all the way to the circle at infinity. By the hypothesis that o(I') > I', we have
that an initial segment of (7,) lies to the left of the corresponding segment
Yo, and we conclude that its end point on the circle at infinity also lies more
to the left. This proves the theorem in the first case.

LEMMA 6.4. If v is a (finite or infinite) geodesic starting on the boundary
of the punctured disk D., and if @ is an automorphism of D, which acts
nontrivially on ~y, then two liftings of v and ¢(y) to the universal cover D;
of D. with the same starting point in 0D; have end points either on different
components of OD; (if v is finite) or on different points at infinity (if v is
infinite). [

In the second case, we can pull the arc ¢(I;) N D, tight with respect to
I'' N D. by an isotopy of ¢ as in the first case, thus making their liftings
disjoint (except for the common starting point). We now have by hypothesis
that the point of intersection of @(I7) with D7 where @(I7;) exits D; lies to
the left of the one of I';. By the previous lemma, the two points will even lie
on different boundary components of D7, and therefore there is a point of D7
between these two boundary components which lies on the circle at infinity.
For the liftings of our geodesic and its image this means the following: 7,
and ©(7,) enter 0D; at the same point, but exit into different components of
D;\D7, with @(7,) choosing the one that lies more to the left. Since 7, and
©(Yo) do not intersect dD; again, they stay inside their chosen component of
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D;\D;. Hence we have for their end points that ¢(a) > «, and the theorem
is proved in the second case.

We now turn to the third case, which includes the possibility that v,
spirals towards a closed geodesic inside D.. We consider the arc X := T
as in Figure 3, and for simplicity we choose X to be a geodesic arc. We
denote by D, C D, the subdisk cut off by X (so that ¥ = 0D, ). Since X 1S
geodesic, we have that -y, N D, is reduced with respect to Y. After an 1sotopy
of ¢ inside D. we can assume by Lemma 6.3 that the first component of
(Vo) N D, (the one that contains (I';) N D.) 18 also reduced with respect
to ¥. By the hypothesis that o(I;) sets off more to the left than I, we are
now in one of the situations indicated in Figure 9.

at least one puncture
inside Dc¢

at least one puncture
inside Dcc

at least two punctures inside
Dc, separated by ¢(I7)

FIGURE 9
The critical disk D, containing I'; and ¢(I'})

A first possiblity is that an initial segment of o(I;) N D, lies to the left
of the tip of D.. (Figures 9(a) and (b)); in the universal cover D; we now
have three arcs, namely ©(7,) N D, a lifting of X, and 7, N D7 (and, in
fact, a fourth arc, another lifting of X) starting at the same point of 0D,
and setting off into different directions, namely in the given order from left to
right. Moreover, the liftings of X are disjoint from the interiors of the other
two arcs, by reducedness. Thus the end point of @(7,) N D; on 9D lies
more to the left than that of 7, N D;. Even stronger, by Lemma 6.4 they lie
either on different points at infinity (in which case we are done) or they leave
D; through different components of 0D; (in which case we argue as above
that their remainders are trapped in different components of D;\D;, so that
©(Vo) stays to the left of ~,).

The second possibility is that some initial segment of (1) N D, lies in
D.. (Figure 9(c)); then D, cut along this initial segment, has precisely two
path components, each of which contains at least one puncture. Since ¢(I7;)
is oriented, we can refer to them as the “left” and the “right” half of D... We
now consider a geodesic arc o which is embedded in the right half of D

CC
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starts at the tip of D, (i.e. at the same point as I'; N D, and oI;) N D,),
and falls into one of the punctures in the right half of D... By construction,
Yo NV D¢ 1s reduced with respect to o, since both are geodesics, and the first
component of ¢(y,) N D, is even disjoint from o. In the universal cover we
now have that the lifting ¢ of ¢ ends on the circle at infinity, thus separating
ECC into two components, the left one containing the lift of ¢(v,) N D,., and
the right one the lift of v, N D... Thus lifts of these two curves, not being
allowed to intersect any component of dD;. and dD; more than once, go on
to hit different points of 9D,,, with ((7,) staying more to the left than 7, .
This completes the proof of the third case, and thus of Theorem 6.1.  []

Proof of Theorem 3.3 (b). If ~, fills D,, then C(v,) is a total curve
diagram, and thus induces a foral ordering of B,,. By Corollary 6.2, the ordering
of B, associated to the point a € (0, 7) agrees with this ordering. [

Proof of Theorem 3.4(b). For any two geodesics <, and 7yg of finite
type one can work out their associated curve diagrams C(v,) and C(vg). By
Corollary 6.2 it is sufficient to decide whether or not the orderings associated
to the two curve diagrams coincide, which can be done by Theorem 5.2. [

Proof of Theorem 3.5. It only remains to be proved that N, = M,, (where
M, 1s given in Proposition 5.3), 1.e. that every curve diagram is realized up
to loose isotopy as C(vy,) for some geodesic ., « € (0,7). This is left as
an exercise to the reader. L]

7. ORDERINGS ASSOCIATED TO GEODESICS OF INFINITE TYPE

In this section we prove the results concerning orderings of infinite type,
and explain the essential differences between finite and infinite type orderings.

We start by describing in more detail than in Section 3 the structure of
geodesics of infinite type. We define the curve diagram C(v,) associated
to a geodesic of infinite type by precisely the same inductive construction
procedure as in the finite type case. Except for a finite initial segment, the
last arc I'; will lie in some path component D, of D,\NTou...uj—1, the only
difference with the finite type case is that I; goes on for ever, without falling
into a puncture and without spiralling. The closure of I’ inside this critical
component D, is a geodesic lamination; the lamination has no closed leaves,
for such a leaf would have to be the limit of an infinite spiral of I’; (see [17,
Appendix]). All self-intersections of the geodesic v, occur inside the finite
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