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5. WHICH PAIRS OF CURVE DIAGRAMS DETERMINE THE SAME ORDERING ?

In this section we define an equivalence relation of curve diagrams which
we call loose isotopy. We give a simple algorithm to decide whether or not two
given curve diagrams are loosely isotopic. We prove that two curve diagrams
determine the same ordering if and only if they are loosely isotopic. Moreover,
the quotient of the set of loose isotopy classes of curve diagrams under the
natural action of B, is finite; we deduce that for fixed n > 2 there is only a
finite number of conjugacy classes of orderings arising from curve diagrams.

DEFINITION 5.1. Let C denote the space of all curve diagrams, equipped
with the natural topology (the subset topology from the space of all mappings
of n—1 arcs into D, ). We define loose isotopy to be the equivalence relation
on C generated by the following two types of equivalence:

(1) Continuous deformation : two curve diagrams are equivalent if they lie
in the same path component of C.

(2) Pulling loops around punctures tight: if some final segment of the
curve I'; say cuts out a disk with one puncture from D,, then this final
segment can be pulled tight, so as to make I'; end in the puncture.

FIGURE 4

Pulling loops around punctures tight

Equivalence (2) is illustrated in Figure 4; here the dashed lines indicate
any number of arcs of index greater than i which start on I';. Equivalence
(1) says that one is allowed to deform the diagram, to slide starting points
of arcs along the union of all previous arcs, including their start and end
points, and even across punctures, if they are the end points of some previous

arcs. Similarly, end points of arcs are allowed to slide across the union of all
“previous points of the diagram”.

In order to get a feel for the meaning of this definition, the reader may
want to prove that the equality signs in Figure 2 represent loose i1sotopies.
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THEOREM 5.2. (a) Two curve diagrams determine the same ordering of
B, if and only if they are loosely isotopic.

(b) There is an algorithm to decide whether or not two curve diagrams T’
and A are loosely isotopic.

Proof. For the implication “<” of (a) we have to prove that loosely
isotopic diagrams define the same ordering. The only nonobvious claim here
is that the ordering is invariant under the “pulling tight” procedure.

In order to prove this, we consider a curve diagram I with j arcs, the i
of which is a loop (i.e. the end point equals the start point) which encloses
exactly one puncture. We consider in addition the curve diagram I' which
is obtained from I by squashing the curve Il to an arc from the starting
point of T" to the enclosed puncture, much as in Figure 4. Let ¢ and v be
two nonisotopic homeomorphisms, and more precisely assume that ¢ >p 1.
Our aim is to prove that © >p Y. If ©o(Tgy...ui—1) and YT oy...ui—1) are
already nonisotopic then this is obvious since the first i — 1 arcs of I" and I”
coincide. On the other hand, if (I'gy...u;) and Y(Igy...u;) are isotopic (and
the difference between ¢ and 1 only shows up on arcs of higher index),
then after an isotopy the first i arcs of o(I") and ¥ (I") coincide as well, and
the result follows easily. Finally in the critical case, when the first difference
occurs on the i™ arc of I", we have the two arcs ¢(I';) and 1(I';) which are
reduced with respect to each other, with (I';) setting off more to the left.
The crucial observation is now that the boundary curves of sufficiently small
regular neighbourhoods of the two curves are isotopic to (I"}) respectively
Y(T?) and reduced with respect to each other — see Figure 5. It is now clear
that o(T") also sets off more to the left than 1(I"}). This completes the proof
of implication “<=" of (a).

We shall now explicitly describe the algorithm promised in (b), and prove
the implication “=-"" of (a) along the way. The proof is by induction on n.
For the case n = 2 we note that any two total curve diagrams (with one arc)
are loosely isotopic. Thus there are only two loose isotopy classes of curve
diagrams : the empty diagram and the one with one arc. The empty diagram
induces the trivial ordering, whereas the diagram with one arc induces the
ordering 0¥ > ol <= k > [. So the desired algorithm consists just of
counting the number of arcs, and non loosely isotopic curve diagrams do
indeed induce different orderings.

Now suppose that n > 3, that the result is true for disks with fewer than
n punctures, and that we want to compare two curve diagrams I,...,I; and
Ag,...,Ay in D,, with j,j’ <n—1. The arc T'; ends either on 8D, or in
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FIGURE 5

Proof that ¢ >r 1 = ¢ > ¢ — the critical case where the first difference
between ¢ and 1) occurs on the arc which is being pulled tight

the interior of I'; itself, or in a puncture. In the first two cases D,\I'; has
precisely two path components. At most one of them can contain only one
puncture; if one of them does, we pull T} tight around it. If both components
of D,\I'| contain more than one puncture and if I'; ends on itself, then we
slide the end point of I'; back along I'j, across its starting point, and into
'y = OD,. There are now two possibilities left: either I'; is an embedded
arc connecting the boundary to a puncture (I'; is nonseparating), or it is an
embedded arc connecting two boundary points, cutting D, into two pieces,
each of which has at least two punctures in its interior (I'y is separating).
We repeat this procedure for A;. There are now four cases:

(1) It may be that I'} 1s separating, while A; is not (or vice versa).

(2) It 1s possible that I'; and A; are both nonseparating but are not
isotopic with starting points sliding in 0D, (a criterion which is easy to
check algorithmically).

(3) It is possible that Iy and A; are both separating but are not isotopic as
oriented arcs, with starting and end points sliding in 0D, (a criterion which
is equally easy to check algorithmically).

CLAIM. In these first three cases the orderings defined by T and A do
not coincide, and T" and A are not loosely isotopic.

We only need to prove the first part of the claim, the second one follows
by the implication “<” of Theorem 5.2(a). We first treat the following
pathological situation: if, in case (3) above, I'; and A; are isotopic to each
other, but with opposite orientations, then a homeomorphism of the type
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FIGURE 6

A homeomorphism which distinguishes the I'- and A-orderings

indicated in Figure 6 is positive in the ordering defined by I', but negative
in the A-ordering. In all other situations allowed by (1), (2) and (3), there
exists a simple closed curve 7 in D, which is disjoint from I'y, but intersects
every arc isotopic to A;. (Consider, for instance, a regular neighbourhood of
0D, UT, in D,. If T, is nonseparating then its boundary curve has this
property; if I'; is separating then at least one of the two boundary curves
has.) We denote by T': D, — D, the positive Dehn twist along 7. The map T
leaves I} invariant, while the arc T(A;) is “more to the left” than A; (to see
this, reduce the two arcs by making them geodesic, and apply Proposition 2.4).

Similarly, there exists a curve 7' which is disjoint from A;, but not from
any arc in the isotopy class of I';. Then T’ ~1 sends T(A;) more to the right,
but not very far: 7’ 1o T(Ay) is still to the left of the arc A;, which is fixed
by T’"l; and 7'~! sends I'y to the right, as well. Thus, in summary, the
composition 7’ 16T sends A; more to the left but I'} more to the right, so
that /"' o T € B, is negative in the ordering determined by I', but positive
in the A-ordering. This proves the claim. (One may find simpler proofs, but
this one will be useful in Section 7.)

(4) The remaining possibility is that I'} and A; can be made to coincide
by isotopies which need not be fixed on 9D, . Such isotopies can be extended
to loose isotopies of I" or A.

To summarize, we can algorithmically decide whether or not there is a
loose isotopy which makes I'y and A; coincide. If the answer is NO (cases
(1)—(3)), then T" and A are not loosely isotopic, and the orderings defined by
I" and A do not coincide. In this case, the implication “=-"" of 5.2(a) is true. If
the answer is YES (case (4)), then D,\I'; = D, \A; has either one or two path
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components, each of which is a disk with at most n — 1 punctures. Moreover,
the arcs I,...,I; form curve diagrams in these disks (with some indices
missing in each curve diagram, if the arcs are distributed among two disks),
and similarly for A, ..., Ay . Finally, the following conditions are equivalent:

(i) I" and A are loosely isotopic,

(i) in each path component of D,\I'; = D,\A; there is a loose isotopy
between the diagrams made up of the remaining arcs of I' respectively A,

(iii) the orderings of Fix(I';) C B, induced by I' and A coincide, where
Fix(I';) denotes the subgroup whose elements have support disjoint from I,

(1v) the orderings of B, defined by I' and A coincide.

The equivalences between (i) and (ii), and between (iii) and (iv) are clear,
whereas the equivalence of (ii) and (iii) follows from the induction hypothesis.
Also by the induction hypothesis, we can decide algorithmically whether or
not (ii) holds. This proves the theorem in case (4). [

We recall that for any ordering “<” of B,, and every element
p € B, = MCG(D,), one can construct an ordering “<,”, by defining
© <p 1 = pp <Pp, and we call <, “the ordering < conjugated by p”.
We observe that if < is induced by a curve diagram I', then <, is induced by
the curve diagram p(I"). Thus two curve diagrams T" and A induce conjugate
orderings if and only if T and A are in the same orbit under the natural
action of B, on the set of loose isotopy classes of curve diagrams.

PROPOSITION 5.3.  Let M, denote the number of conjugacy classes of total
orderings of B, arising from curve diagrams. Then M, can be calculated by
the following recursive formula

n—2

My=1 and My=M, +> (377) My My_y.
k=2

REMARK. In order to avoid confusion, we recall our orientation conven-
tion: we are insisting that “more to the left” means “larger”. It is for this

reason that there is only one ordering of B, = Z, not two, as one might
expect.

Proof. 'We shall count the orbits of the set of loose isotopy classes of total
curve diagrams under the action of B,. The case n = 2 is clear, since there

is only one loose isotopy class of curve diagrams. Now suppose inductively
that the formula is true for up to n — 1 strings.
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For every total curve diagram in D, there are two possibilities :

(a) the first arc of the curve diagram ends in a puncture or can be pulled
tight so as to end in a puncture;

(b) the first arc cuts D, into two disks, each of which contains at least
two punctures.

For case (a) we notice that the first arc can be turned into the horizontal arc
from —1 to the leftmost puncture, by an action of some appropriate element
of B,. There are now precisely M,_; orbits of loose isotopy classes of curve
diagrams of the remaining n — 2 arcs in the n — 1-punctured disk D, (the
first arc). So case (a) gives a contribution of M,_; orbits.

The argument for case (b) is similar: the action of an appropriate element
of B, will turn the first arc of any curve diagram of type (b) into the vertical
arc, oriented from bottom to top, having k punctures on its left and n — k
on its right, for some k € {2,...,n—2}. In this case, there should be k — 1
arcs on the left and n — k — 1 arcs on the right of the first arc, so there are
(Z:?) ways to distribute the remaining n — 2 arcs over the two sides. Finally,
there are M) respectively M,_; orbits of loose isotopy classes of total curve
diagrams on the disk on the left respectively on the right. [

6. REPLACING FINITE TYPE GEODESICS BY CURVE DIAGRAMS

In this section we prove the main theorems on orderings of finite type.
The strategy is to associate to every geodesic of finite type a curve diagram
such that the (possibly partial) orderings arising from the geodesic and the
curve diagram agree. Thus we obtain, via curve diagram orderings, a good
understanding of finite type orderings.

Proof of Theorem 3.3 (a). If D,\7, has a path component which contains
at least two holes, then we can push the boundary curve of this path component
slightly into its interior, to make it disjoint from 7,. A Dehn twist along
such a curve will be a nontrivial element of B,, and act trivially on ~,. [J

We now define the curve diagram C(vy,) associated to a geodesic vy, of
finite type. It is a subset of ., more precisely a union of segments of -y
which start and end at self-intersection points. The diagram will be disjoint
from the punctures, except that the last arc may fall into a puncture. For
simplicity we shall write I for C(v,) and, as before, I'gy...ui—1 for j;lo Iy.
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