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30 P. BAUM AND A. CONNES

COROLLARY 7. If v = e(p), for some p € HXI,R), then the subgroup
of R, A =trr(Ko(Cr(T',7))) contains the group:

(ch K. (BT'), exp(p)) .
This follows from Theorem 6 and Lemma 5b).

Moreover, when the map p is an isomorphism, one can conclude that
A = (chK.(BI'),exp(p)). Thus using Theorem 3 we get:

COROLLARY 8. Let I' be the fundamental group of a compact Riemann
surface of positive genus, v € HXI',S') be a 2-cocycle and 8 € R/Z the
class of v in H*T,R)/H*(T',Z) = R/Z. Then the image of Ko(C}(,~)) by
the canonical trace ¢ = Trr is equal to the subgroup Z + 6Z C R.

Since, for g > 1, the trace trr is the unique normalized trace on
Cr(I',7) (for any value of ), one gets that the corresponding C*-algebras
are isomorphic only when the I'’s are the same (using K;j) and when the ~’s
are equal or opposite (in H*(T,S')).

9. FOLIATIONS

Let V be a C*°-manifold, and let F be a C°°-foliation of V. Thus F is
a C°°-integrable sub-vector bundle of 7V. As in [33] let G be the holonomy
groupoid (graph) of (V,F). The manifold V is assumed to be Hausdorff
and second countable. G, however, is a C°°-manifold which might not be
Hausdorff. A point in G is an equivalence class of C°°-paths

~v:[0,1] - V

such that () remains within one leaf of the foliation for all # € [0, 1]. Set
s(v) = v(0), r(y) = y(1). The equivalence relation on the ~y preserves s(v)

and r(y) so G comes equipped with two maps G 3 V.

Let Z be a possibly non-Hausdorff C°°-manifold. Assume given a C*°-map
p: Z—V, set

ZoG={(z,7) €ZxG|p(z) =s(7)} .

A C®° right action of G on Z is a C°°-map
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ZoG—Z

denoted by
(z,7) — 2
such that
py) =r(y), @Y =2rY), @)=z,

where [, denotes the constant path at p € V.

An action of G on Z is proper if:
(i) the map ZoG — Z X Z given by (z,7) — (z,z7) is proper (i.e. the inverse

image of a compact set is compact);

(ii) the quotient space Z/T" is Hausdorff. Here Z/T" is the set of equivalence
classes of z € Z where z ~ 7’ if, for some v € G, zy=17'.

Specializing to Z =V, the groupoid G acts on V by p(p) =p and

py = (1)

(peV, veG, p=~(0)). For many examples this action of G on V is not
proper. Set v, = T,V /F,, so that v is the normal bundle of the foliation. v
is a G-vector bundle since the derivative of holonomy gives a linear map

Vp ™ Vpy -

This is, of course, just the well-known fact that v is flat along the leaves of
the foliation.

More generally, if Z is a G-manifold, then the orbits of the G-action
foliate Z. Denote the normal bundle of this foliation by ©. Then v is a
G-vector bundle on Z.

If Z is a proper G-manifold, a G-vector bundle on Z with G-compact
support is a triple (Ey, Ey,0) where Eg, E; are G-vector bundles on Z and
o: Ey — E; is a morphism of G-vector bundles with Support (0) G-compact.
As in §2 above one then defines Vé;(Z) and KE(Z) , 1 =0,1. These are defined
and used only for proper G-manifolds.

DEFINITION 1. A K-cocycle for (V,F) is a pair (Z,£) such that
(1) Z is a proper G-manifold,

2) £ € V5l()* @ p*v*], where p: Z — V is given by the action of G
on Z.

In [12] and [14] a canonical C*-algebra C*(V,F) is constructed. This
C*-algebra can heuristically be thought of (up to Morita equivalence) as the
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algebra of continuous functions on the “space of leaves” of the foliation. Thus
K.C*(V,F) can be viewed as the K-theory of the “space of leaves” of the
foliation.

To define the geometric K-theory K*(V,F) we proceed quite analogously
to §2 above.

THEOREM 2. Let (Z,&) be a cocycle for (V,F). Then (Z,£) determines
an element in K,C*(V,F).

Proof. If p: Z — V is a submersion then & gives rise to the symbol of a
G -equivariant family of elliptic operators D, parametrized by the points of V.
The K-theory index of this family D is the desired element of K,.C*(V,F).

If p: Z — V is not a submersion, then as in the proof of Theorem 1 of
§2 one reduces to the submersion case.  []

REMARK 3. With D as in the proof of the Theorem, Index(D) € K.C*(V, F)
will be denoted w(Z,&). For & € VL[0)* @ p*v*], w(Z,&) € K; C*(V, F),
i=0,1.

Suppose given a commutative diagram

Z; —l—>22

Pl\ ./Pz
vV

where Z;,Z, are G-manifolds with Z;,Z, proper and & is a G-map. There
is then a Gysin map

hy: K5 [(0)* @ p v*] — K5 [(72)* @ p3 1*].
THEOREM 4. If & € VE[(1)*® @ pi V] then w(Z1,&1) = (Zp, hi(61)).
REMARK 5. Let I'(V,F) be the collection of all K-cocycles (Z,¢&) for

(V,F). On I'(V, F) impose the equivalence relation ~, where (Z, &) ~ (Z',¢)
if and only if there exists a commutative diagram

Z _L) Z// (_ﬁ_ Z/
P\, lp// / p/

V
with # and A’ G-maps and with (&) = hy(£').
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DEFINITION 6. K*(V,F) = I'(V, F)/~. Addition in K*(V, F) is by disjoint
union of K-cocycles. The natural homomorphism of abelian groups

K'(V,F) — K; C*(V,F)

is defined by
(Z,8) = Z,8).

CONJECTURE. pu: K*(V,F) — K.C*(V,F) is an isomorphism.

REMARK 7. Calculations of M. Pennington [25] and A.M. Torpe [32]
verify the conjecture for certain foliations.

Given (V,F), let BG be the classifying space of the holonomy groupoid
G. Since v is a G-vector bundle on V, v induces a vector bundle 7 on BG.
As in §3 above there is then a natural map

K7(BG) — K*(V,F).

PROPOSITION 8. The natural map K.(BG) — K*(V,F) is rationally
injective. If G is torsion free then K] (BG) — K*(V,F) is an isomorphism.

REMARK 9. Examples show that for foliations with torsion holonomy, the
map K](BG) — K*(V,F) may fail to be an isomorphism.

THEOREM 10. If F admits a C°° Euclidean structure such that the

Riemannian metric for each leaf has all sectional curvatures non-positive,
then

w: K*(V,F) — K.C*(V, F)

IS injective.

10. FURTHER DEVELOPMENTS

The theory outlined in §§1-8 can be developed in various directions. We
very briefly mention two of them here.

Let A be a C*-algebra. If G is a Lie group and X is a G-manifold, then
using A as coefficients there is both a geometric and an analytic K-theory for
(X, G). The analytic K-theory is the K-theory of the C*-algebra (Co(X)x G)®A .
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