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282 H. SHORT AND B. WIEST

(1) Neville Smythe [23] used the orderability of surface groups to prove
that any null-homotopic curve on a surface S is the image under projection
of an embedded unknotted loop in § x I.

(2) As pointed out by N. Smythe [16] in response to a question of
L. Neuwirth [15, Question N], knot groups are in general not bi-orderable.
For instance the trefoil knot group (which is isomorphic to the braid group
on three strings Bj), is not bi-orderable. To show this, recall that B; contains
an element A (the “half twist”) which is not in the centre, but whose square
A? is. Assume that > is a bi-ordering of Bz, and let b € By be such that
bA # Ab, say bA > Ab. Multiplying this inequality on the left by A and on
the right by A™! would yield Ab > A?bA™' = bA’A~! = bA, which is a
contradiction.

Neuwirth reformulated the question as ‘Are knot groups left orderable 7.
A positive answer to this question follows from an observation by J. Howie
and H. Short [12] that knot groups are locally indicable (every non-trivial
finitely generated subgroup has Z as a homomorphic image), together with a
theorem of Burns and Hale [4] that locally indicable groups are left orderable.
The converse of Burns and Hale’s theorem 1s known to be false — see [1] and
[9, Theorem 5.3].

(3) We have just seen that Bs (and hence B, for all n) is not bi-orderable.
Kim and Rolfsen [13] have recently proved that the finite index subgroup PB,
of pure braids is bi-orderable. However, no bi-ordering of PB, extends to a
left ordering of B, [20].

(4) The Zero Divisor Conjecture, often attributed to Kaplansky, asserts
that if R is a ring without zero divisors and G is a torsion-free group
then the group ring RG has no zero divisors. The hypothesis that G be
torsion-free is necessary, for if G contains an element x of order n then
(1—x)(1+x+---+x"1 =0 in RG. The conjecture is known to hold for left
orderable groups. In fact, it is not hard to see that left orderable groups have
the “two unique product” property which implies that the conjecture holds for
them (see e.g. [18], and also Delzant [7] and Bowditch [3] for some recent
remarks about this property).

2. ORDERINGS OF MAPPING CLASS GROUPS USING HYPERBOLIC GEOMETRY

In this section we present the construction of orders on mapping class
groups of surfaces which we learned from W.P. Thurston, and prove that they
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all extend the subword-ordering of Elrifai-Morton. The idea comes from the
following classical situation as developed by Nielsen. As is well known, every
closed surface of genus g > 2 can carry a hyperbolic structure; i.e. there is a
homeomorphism between the universal cover S~ of S and the hyperbolic plane
H? such that the covering transformations are isometries of H?. There is a

natural closure §° =~ H  of §~ = H?, defined by adding the so-called circle at

infinity S._ = 8ﬁ2. Points of this circle can be defined as classes of geodesics,
or quasi-geodesics, v: [0,00) — H?, staying a bounded distance apart. The
covering action of 7(S) on S~ extends to an action on S~. So in particular,
we have an action of 7;(S) on the circle at infinity by homeomorphisms; this
action has been much studied (for a good modern exposition of this see [10]).
Even stronger, every homeomorphism of the surface lifts and extends to a
homeomorphism of S~ ; however, there is a 7;(S)-family of possible choices
of lift, and therefore we get no well-defined action of MCG(S) on S._.
Instead of closed surfaces, Thurston considers surfaces § with nonempty
boundary, a finite number of punctures, and x(S) < 0. Again, one can obtain
a hyperbolic structure on S in which 0S is a geodesic and the punctures are
cusps; this time, S~ is identified with a proper subset of H?. The boundary
of this subset is just the union of the lifts of OS; in particular it is a union of
geodesics in H?, and it follows that S~ is convex in the hyperbolic metric.

Moreover, the set of limit points of S~ on the circle at infinity OH is a
Cantor set in OH . The closure S~ of S~ in H', i.e. S~ with its limit points
on the circle at infinity attached, is homeomorphic to a closed disk; 0S~ is
a circle, also containing S~ N O as a Cantor set.

We now fix, once and for all, a basepoint of S~ anywhere on 0S~. We
denote the component of 9SS~ which contains the base point by IT (see
Figure 1). The basepoint projects to a basepoint of S in S, and IT is
an infinite cyclic cover of one component of AS. We consider the set of
geodesics in S~ starting at the basepoint — they are parametrized by the
interval (0, ), according to their angle with IT. We shall denote by 7, the
geodesic with angle o € (0,7) and by ~, its projection to S. Since S~ is
hyperbolically convex, each point of S~ can be connected to the basepoint
by a unique geodesic (possibly of infinite length) in S~, and for points in
S™\IT this is one of the geodesics 7, with « € (0, 7). This construction
proves

LEMMA 2.1. There is a natural homeomorphism between OS\I1 and
O,m). [
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Picture of S~ in H? (here S is a twice-punctured disk)
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As in the case of closed surfaces, we have an action of m((§) on S,
which restricts to an action on S~ . However, this time we have more:

PROPOSITION 2.2. There is a natural action by orientation preserving
homeomorphisms of MCG(S) on 0S™\I1 = (0, ).

Proof. Every homeomorphism ¢: § — S has a canonical lift ©: §7— 857,
namely the one that fixes the basepoint of S, and thus all of IT. Moreover,
@ has an extension @: S~ — S~. The restriction of this homeomorphism to
OS™ is invariant under isotopy of ¢, and fixes II, and thus yields a well-
defined orientation-preserving homeomorphism of 9S™\IT. (Note that there is
no requirement for § to be orientable here.) [

COROLLARY 2.3. MCG(S) is left orderable.

Proof No nontrivial element of MCG(S) acts trivially on (0, ), because
if such an element existed, it would in particular fix all liftings of the
basepoint of S, and thus induce the identity-homorphism on m(S); by [2,
Corollary 1.8.3] it would then be isotopic to the identity, in contradiction with
the hypothesis. The result now follows from Remark 1.2(2), because (0, 7) is
homeomorphic to R.

However, there is an elementary proof in our situation. We choose arbitrarily
a finite generating set of 7(S), and denote the end points of the liftings of
these elements by s1,...,s¢ € (0,7). A left order on MCG(S) is now defined
inductively : if o(s;) > s; then ¢ > 1 (and the same with > replaced by <);
if (s1) = s1, but (s3) > s, then ¢ > 1 as well, and so on; this 1s a total
order, because we have that ¢(s;) = s; for all i if and only if ¢ =1. L]

However, for the rest of the paper we shall be less interested in orderings
of this type, but rather in orderings induced by the orbits of single geodesics,
l.e. in orderings of the type introduced in Remark 1.2(1).

We recall the definition of a positive Dehn twist along a simple closed
curve 7 in the surface S : it can be characterised as a homeomorphism § — S
which maps all but an annular neighbourhood of 7 identically, and sends any
arc that crosses 7 to an arc that, upon entering the annular neighbourhood,
turns left, spirals exactly once along 7, and then turns right to leave the
annular neighbourhood through its other boundary component and continue
as before. For example in the case of a punctured disk, if A € B,, denotes
the “half-twist braid”, then A* is a Dehn twist along a curve parallel to the

boundary of the disk.
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PROPOSITION 2.4. For the positive Dehn twist T along any simple closed
geodesic T in S we have T(a) > « for any o € (0, 7). If 7y, intersects T
at least once, then the inequality is strict.

Proof. If 7, is disjoint from 7, then T(«) = «. If, on the contrary, v,
intersects 7, and hence any curve isotopic to 7, any number of times (possibly
infinitely often), then we denote by T;(v,) (i € N) the curve obtained from
Yo by applying the Dehn twist to the first i intersections of -, with 7
and 1gnoring all following intersections; we denote by 7T;(a) its end point in
OD,\IT. We have T(a) = lim;_,, Ti(c).

We now claim that (T;(«));en is a strictly increasing sequence. To simplify
notation, we shall prove the special case T(c) > «, the proof in the general
case is exactly the same. In the universal cover D, we consider the lifting of
the curve Tj(7,): starting at the basepoint, it sets off along 7., up to the
first intersection with some lifting 7 of 7. There it turns left, walks along
T up to the next preimage of the intersection point, where it encounters a
different lifting v/, of 7,. There it turns right, following this lifting all the
way to OD,\IT. The crucial point now is that 7, and 7. intersect 7 at
the same angle, because the two intersections are just different liftings of
the same intersection between v, and 7 in D,. It follows that 7, and 7,
do not intersect, not even at infinity, for if they did they would determine
a hyperbolic triangle in D, two of whose interior angles already add up to
180 degrees, which is impossible. This implies the claim, and thus proves the
proposition. [

COROLLARY 2.5. All total orderings of the braid group B, considered
in this paper extend the subword-ordering of Elrifai-Morton [8, 25]. More
precisely, if a curve 7 in D, encloses a precisely twice punctured disk and
T'/2 is the positive half-Dehn twist along T interchanging the two punctures
then T op > ¢ for any ¢ € B, and any ordering > of Thurston-type.

Proof. Tt suffices to prove that T'/2(a) > « for all o € (0, 7). If
there existed an « € (0,7) with TV/2(a) < « then it would follow that
T(a) = TY? 0 TV?(a) < T"*(a)) < o (where the first inequality holds since
T'/2 is orientation preserving), in contradiction with the proposition. [

REMARK 2.6. Here is an example of an ordering < of B, that does not
arise from Thurston’s construction: if “<” is any ordering of Thurston-type,
then we define an element ¢ € B, to be in the positive cone of < if either
ab(p) is positive, where ab: B, — Z 1is the abelianization, or if ab(yp) =0
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and 1z < . In this ordering the commutator subgroup is convex [19], and
we leave it to the reader to verify that no Thurston-type ordering has this

property.

3. MAIN RESULTS

We shall mainly be interested in the case S = D, (n > 2), where D,, is the
closed unit disk in C, with n punctures lined up in the real interval (—1.1);
in this case the mapping class group is a braid group: MCG(D,) = B,. We
recall that for o € (0, 7) we denote by ~, the geodesic which starts at the
basepoint with angle « with 95, and by 7, its preimage in the universal
cover starting at the basepoint of S~.

DEFINITION 3.1. A geodesic v,, « € (0,7), is said to be of finite type
if it satisfies at least one of the following conditions:

(a) there exists a finite initial segment ~! such that any two punctures that
lie in the same path component of S\~ also lie in the same path component

of S\, or
(b) it falls into a puncture, or
(c) it spirals towards a simple closed geodesic.

If a geodesic v, is not of finite type then we say it is of infinite fype.
We also define the ordering of MCG(S) induced by a geodesic =, to be of
finite or infinite type if v, is of finite or infinite type.

An infinite type geodesic looks as follows. All its self intersections occur
in some finite initial segment ~% . At least one of the path components of
S\~. contains three or more punctures in its interior, and the closure of v, '\~
is a geodesic lamination without closed leaves inside such a component. In
particular, there is a pair of punctures which are separated by the whole
geodesic, but not by any finite initial segment. (Note that the geodesic v, \7,
is isolated from both sides — in this it 1s very different from leaves of geodesic
laminations on surfaces without boundary.)

DEFINITION 3.2. For a geodesic 7, of finite respectively infinite type we
say that it fills the surface in finite respectively infinite time if all punctures
lie in different path components of S\v,. By contrast, a geodesic ~, does

not fill the surface if S\, has a path component that contains two punctures.
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