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ORDERINGS OF MAPPING CLASS GROUPS
AFTER THURSTON

by Hamish SHORT and Bert WIEST

ABSTRACT. We are concerned with mapping class groups of hyperbolic surfaces
with nonempty boundary. We present a very natural method, due to Thurston, of finding
many different left orderings of such groups. The construction uses the action of the
mapping class group on the boundary of the universal cover (viewed in H?), including
its limit points on the circle at infinity. We classify all orderings of braid groups which
arise in this way. Moreover, restricting to a certain class of “nonpathological” orderings,
we prove that there are only finitely many conjugacy classes of such orderings.

We shall be concerned with certain surfaces S and their mapping class
groups MCG(S). The surfaces under consideration are compact, with a finite
set of punctures and nonempty boundary, but not necessarily oriented. We
recall that MCG(S) is the group of isotopy classes of homeomorphisms § — S
which map OS identically and permute the punctures. It was first proved by
Dehornoy [6] that braid groups (i.e. mapping class groups of punctured disks)
are left orderable. A topological proof of this result was given in [9], and
the extension to mapping class groups of general surfaces with boundary can
be found in [22]. (Note that mapping class groups of surfaces with empty
boundary have torsion, and thus cannot be left orderable.) Here we present
a very natural method, due to Thurston [24], of finding many different left
orderings of such groups. In brief, one equips the surface with a hyperbolic
structure, lifts it to H?, attaches to this cover its limit points on the circle at
infinity, and notices that there is a natural action of the mapping class group
on the (circular) boundary of the resulting space which fixes a point, and thus
an action on R. We classify the set of orderings of braid groups which arise
from Thurston’s construction (not all orderings do — see the example in 2.6);
more precisely, we divide these orderings into two disjoint classes, which we
call orderings of finite, respectively infinite, type; the orderings inside each
of the classes are classified by combinatorial means. Finite type orderings are
discrete, and there exist only finitely many conjugacy classes of them. By
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contrast, there are uncountably many infinite type orderings, and all of them
are non-discrete.

The outline of the paper is as follows. In the first section we give a
short introduction to orderable groups and survey some known results about
them. In the second section we present Thurston’s construction. In the third
section we define finite and infinite type orderings, and state our classification
theorems. Sections four to six are concerned with finite type orderings: in
Section 4 we describe a different method of constructing orderings, using
“curve diagrams”. In Section 5 we prove that the set of orderings arising from
curve diagrams 1s very easy to understand and classify. Moreover, we prove
that up to conjugacy only a finite number of orderings arise in this way. In
the sixth section we prove the classification theorems for finite type orderings.
The strategy is to associate to every point of R with orbit of finite type a
curve diagram such that the orderings arising from this point and from the
curve diagram agree. Thus we obtain, via curve diagram orderings, a good
understanding of Thurston type orderings. In Section 7 we prove the results
about the infinite type case.

1. ORDERABLE GROUPS

In this section we define orderable groups and survey some known results
about them. The standard reference for orderings on groups is Rhemtulla and
Mura’s book [19].

DEFINITION 1.1. A group G is left orderable (respectively right orderable)
if there is a total order < on G which is invariant under left mutiplication
(resp. right multiplication), that is, such that, for all a,b € G, a<b, a=b>
or b < a, and for all g € G, a < b implies that ga < gb (resp. ag < bg).

A group G 1is bi-orderable or two-sided orderable if there is a total order
on G which is respected by multiplication on the left and multiplication on
the right: i.e. a < b = ga < gb and ag < bg.

Two left orderings < and < on a group G are conjugate if there exists
a g € G such that a < b if and only if ag < bg. So two left orderings are
conjugate if “one is obtained from the other by right translation in the group”.
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REMARKS 1.2.

(1) The following observation will be extremely important in what follows.
If a group G acts on the left by orientation preserving homeomorphisms on
R, then every point x in R with free orbit (i.e. Stab(x) = {16}) gives rise
to a left ordering on G, by defining g > & <= g(x) > h(x). We have
for every f € G that fg(x) > fh(x) <= g(x) > h(x), since the action of f
preserves the orientation of R; this implies that the ordering is indeed left
invariant. Note that different points in R may give rise to different orderings.
If a point x does not have free orbit, it still gives rise to a partial left invariant
ordering.

(2) In fact, a countable group is left orderable if and only if it has an action
by orientation preserving homeomorphisms on R such that only the trivial
group element acts by the identity-homeomorphism, see for instance [11].

(3) A left orderable group is torsion-free: if an element x had order #,
and if 1 < x, then it would follow that 1 <x < x* <. <x" ! <x"=1.

(4) The “positive cone” of the ordering, P = {g € G | g > 1} has
the properties that G = P U {1} U P!, and that PP C P. Conversely,
given a subset with these two properties, a left order < can be defined
by a < b <= a 'b € P. Similarly, a right order < is obtained from
a<b <= ab~! € P. (In particular, a group is left orderable if and only if
it 1s right orderable.) The orders are total because of the first property, and
transitive because of the second. The orders are bi-orders if and only if we
have in addition that g~ !'Pg C P for all g € G.

(5) The following classes of groups are bi-orderable :
(a) finitely generated torsion-free abelian groups;
(b) finitely generated free groups (this is a result of Magnus, see e.g. [13]);

(c) more generally, residually free groups, like fundamental groups of closed
surfaces (this is due to Baumslag, see [26, 27, 28]).

(6) If S is a closed surface, then MCG(S) has torsion, but there exists a
finite index subgroup which is torsion-free: consider the set of all elements
which act as the identity on the homology H;(S,Z,), where p is a prime
larger than 84 (genus — 1). The torsion-freeness of these groups seems to be
a folklore result, the analogue for the Torelli group (defined in the same way,

only with Z, replaced by Z) is proved in [14]. It is an open problem whether
or not these subgroups are left orderable.

We now give four examples of attractive results about orders on groups.
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(1) Neville Smythe [23] used the orderability of surface groups to prove
that any null-homotopic curve on a surface S is the image under projection
of an embedded unknotted loop in § x I.

(2) As pointed out by N. Smythe [16] in response to a question of
L. Neuwirth [15, Question N], knot groups are in general not bi-orderable.
For instance the trefoil knot group (which is isomorphic to the braid group
on three strings Bj), is not bi-orderable. To show this, recall that B; contains
an element A (the “half twist”) which is not in the centre, but whose square
A? is. Assume that > is a bi-ordering of Bz, and let b € By be such that
bA # Ab, say bA > Ab. Multiplying this inequality on the left by A and on
the right by A™! would yield Ab > A?bA™' = bA’A~! = bA, which is a
contradiction.

Neuwirth reformulated the question as ‘Are knot groups left orderable 7.
A positive answer to this question follows from an observation by J. Howie
and H. Short [12] that knot groups are locally indicable (every non-trivial
finitely generated subgroup has Z as a homomorphic image), together with a
theorem of Burns and Hale [4] that locally indicable groups are left orderable.
The converse of Burns and Hale’s theorem 1s known to be false — see [1] and
[9, Theorem 5.3].

(3) We have just seen that Bs (and hence B, for all n) is not bi-orderable.
Kim and Rolfsen [13] have recently proved that the finite index subgroup PB,
of pure braids is bi-orderable. However, no bi-ordering of PB, extends to a
left ordering of B, [20].

(4) The Zero Divisor Conjecture, often attributed to Kaplansky, asserts
that if R is a ring without zero divisors and G is a torsion-free group
then the group ring RG has no zero divisors. The hypothesis that G be
torsion-free is necessary, for if G contains an element x of order n then
(1—x)(1+x+---+x"1 =0 in RG. The conjecture is known to hold for left
orderable groups. In fact, it is not hard to see that left orderable groups have
the “two unique product” property which implies that the conjecture holds for
them (see e.g. [18], and also Delzant [7] and Bowditch [3] for some recent
remarks about this property).

2. ORDERINGS OF MAPPING CLASS GROUPS USING HYPERBOLIC GEOMETRY

In this section we present the construction of orders on mapping class
groups of surfaces which we learned from W.P. Thurston, and prove that they
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all extend the subword-ordering of Elrifai-Morton. The idea comes from the
following classical situation as developed by Nielsen. As is well known, every
closed surface of genus g > 2 can carry a hyperbolic structure; i.e. there is a
homeomorphism between the universal cover S~ of S and the hyperbolic plane
H? such that the covering transformations are isometries of H?. There is a

natural closure §° =~ H  of §~ = H?, defined by adding the so-called circle at

infinity S._ = 8ﬁ2. Points of this circle can be defined as classes of geodesics,
or quasi-geodesics, v: [0,00) — H?, staying a bounded distance apart. The
covering action of 7(S) on S~ extends to an action on S~. So in particular,
we have an action of 7;(S) on the circle at infinity by homeomorphisms; this
action has been much studied (for a good modern exposition of this see [10]).
Even stronger, every homeomorphism of the surface lifts and extends to a
homeomorphism of S~ ; however, there is a 7;(S)-family of possible choices
of lift, and therefore we get no well-defined action of MCG(S) on S._.
Instead of closed surfaces, Thurston considers surfaces § with nonempty
boundary, a finite number of punctures, and x(S) < 0. Again, one can obtain
a hyperbolic structure on S in which 0S is a geodesic and the punctures are
cusps; this time, S~ is identified with a proper subset of H?. The boundary
of this subset is just the union of the lifts of OS; in particular it is a union of
geodesics in H?, and it follows that S~ is convex in the hyperbolic metric.

Moreover, the set of limit points of S~ on the circle at infinity OH is a
Cantor set in OH . The closure S~ of S~ in H', i.e. S~ with its limit points
on the circle at infinity attached, is homeomorphic to a closed disk; 0S~ is
a circle, also containing S~ N O as a Cantor set.

We now fix, once and for all, a basepoint of S~ anywhere on 0S~. We
denote the component of 9SS~ which contains the base point by IT (see
Figure 1). The basepoint projects to a basepoint of S in S, and IT is
an infinite cyclic cover of one component of AS. We consider the set of
geodesics in S~ starting at the basepoint — they are parametrized by the
interval (0, ), according to their angle with IT. We shall denote by 7, the
geodesic with angle o € (0,7) and by ~, its projection to S. Since S~ is
hyperbolically convex, each point of S~ can be connected to the basepoint
by a unique geodesic (possibly of infinite length) in S~, and for points in
S™\IT this is one of the geodesics 7, with « € (0, 7). This construction
proves

LEMMA 2.1. There is a natural homeomorphism between OS\I1 and
O,m). [
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circle at

infinity 3{_2/

universal cover

D, (here n =2)

FIGURE 1

Picture of S~ in H? (here S is a twice-punctured disk)
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As in the case of closed surfaces, we have an action of m((§) on S,
which restricts to an action on S~ . However, this time we have more:

PROPOSITION 2.2. There is a natural action by orientation preserving
homeomorphisms of MCG(S) on 0S™\I1 = (0, ).

Proof. Every homeomorphism ¢: § — S has a canonical lift ©: §7— 857,
namely the one that fixes the basepoint of S, and thus all of IT. Moreover,
@ has an extension @: S~ — S~. The restriction of this homeomorphism to
OS™ is invariant under isotopy of ¢, and fixes II, and thus yields a well-
defined orientation-preserving homeomorphism of 9S™\IT. (Note that there is
no requirement for § to be orientable here.) [

COROLLARY 2.3. MCG(S) is left orderable.

Proof No nontrivial element of MCG(S) acts trivially on (0, ), because
if such an element existed, it would in particular fix all liftings of the
basepoint of S, and thus induce the identity-homorphism on m(S); by [2,
Corollary 1.8.3] it would then be isotopic to the identity, in contradiction with
the hypothesis. The result now follows from Remark 1.2(2), because (0, 7) is
homeomorphic to R.

However, there is an elementary proof in our situation. We choose arbitrarily
a finite generating set of 7(S), and denote the end points of the liftings of
these elements by s1,...,s¢ € (0,7). A left order on MCG(S) is now defined
inductively : if o(s;) > s; then ¢ > 1 (and the same with > replaced by <);
if (s1) = s1, but (s3) > s, then ¢ > 1 as well, and so on; this 1s a total
order, because we have that ¢(s;) = s; for all i if and only if ¢ =1. L]

However, for the rest of the paper we shall be less interested in orderings
of this type, but rather in orderings induced by the orbits of single geodesics,
l.e. in orderings of the type introduced in Remark 1.2(1).

We recall the definition of a positive Dehn twist along a simple closed
curve 7 in the surface S : it can be characterised as a homeomorphism § — S
which maps all but an annular neighbourhood of 7 identically, and sends any
arc that crosses 7 to an arc that, upon entering the annular neighbourhood,
turns left, spirals exactly once along 7, and then turns right to leave the
annular neighbourhood through its other boundary component and continue
as before. For example in the case of a punctured disk, if A € B,, denotes
the “half-twist braid”, then A* is a Dehn twist along a curve parallel to the

boundary of the disk.
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PROPOSITION 2.4. For the positive Dehn twist T along any simple closed
geodesic T in S we have T(a) > « for any o € (0, 7). If 7y, intersects T
at least once, then the inequality is strict.

Proof. If 7, is disjoint from 7, then T(«) = «. If, on the contrary, v,
intersects 7, and hence any curve isotopic to 7, any number of times (possibly
infinitely often), then we denote by T;(v,) (i € N) the curve obtained from
Yo by applying the Dehn twist to the first i intersections of -, with 7
and 1gnoring all following intersections; we denote by 7T;(a) its end point in
OD,\IT. We have T(a) = lim;_,, Ti(c).

We now claim that (T;(«));en is a strictly increasing sequence. To simplify
notation, we shall prove the special case T(c) > «, the proof in the general
case is exactly the same. In the universal cover D, we consider the lifting of
the curve Tj(7,): starting at the basepoint, it sets off along 7., up to the
first intersection with some lifting 7 of 7. There it turns left, walks along
T up to the next preimage of the intersection point, where it encounters a
different lifting v/, of 7,. There it turns right, following this lifting all the
way to OD,\IT. The crucial point now is that 7, and 7. intersect 7 at
the same angle, because the two intersections are just different liftings of
the same intersection between v, and 7 in D,. It follows that 7, and 7,
do not intersect, not even at infinity, for if they did they would determine
a hyperbolic triangle in D, two of whose interior angles already add up to
180 degrees, which is impossible. This implies the claim, and thus proves the
proposition. [

COROLLARY 2.5. All total orderings of the braid group B, considered
in this paper extend the subword-ordering of Elrifai-Morton [8, 25]. More
precisely, if a curve 7 in D, encloses a precisely twice punctured disk and
T'/2 is the positive half-Dehn twist along T interchanging the two punctures
then T op > ¢ for any ¢ € B, and any ordering > of Thurston-type.

Proof. Tt suffices to prove that T'/2(a) > « for all o € (0, 7). If
there existed an « € (0,7) with TV/2(a) < « then it would follow that
T(a) = TY? 0 TV?(a) < T"*(a)) < o (where the first inequality holds since
T'/2 is orientation preserving), in contradiction with the proposition. [

REMARK 2.6. Here is an example of an ordering < of B, that does not
arise from Thurston’s construction: if “<” is any ordering of Thurston-type,
then we define an element ¢ € B, to be in the positive cone of < if either
ab(p) is positive, where ab: B, — Z 1is the abelianization, or if ab(yp) =0
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and 1z < . In this ordering the commutator subgroup is convex [19], and
we leave it to the reader to verify that no Thurston-type ordering has this

property.

3. MAIN RESULTS

We shall mainly be interested in the case S = D, (n > 2), where D,, is the
closed unit disk in C, with n punctures lined up in the real interval (—1.1);
in this case the mapping class group is a braid group: MCG(D,) = B,. We
recall that for o € (0, 7) we denote by ~, the geodesic which starts at the
basepoint with angle « with 95, and by 7, its preimage in the universal
cover starting at the basepoint of S~.

DEFINITION 3.1. A geodesic v,, « € (0,7), is said to be of finite type
if it satisfies at least one of the following conditions:

(a) there exists a finite initial segment ~! such that any two punctures that
lie in the same path component of S\~ also lie in the same path component

of S\, or
(b) it falls into a puncture, or
(c) it spirals towards a simple closed geodesic.

If a geodesic v, is not of finite type then we say it is of infinite fype.
We also define the ordering of MCG(S) induced by a geodesic =, to be of
finite or infinite type if v, is of finite or infinite type.

An infinite type geodesic looks as follows. All its self intersections occur
in some finite initial segment ~% . At least one of the path components of
S\~. contains three or more punctures in its interior, and the closure of v, '\~
is a geodesic lamination without closed leaves inside such a component. In
particular, there is a pair of punctures which are separated by the whole
geodesic, but not by any finite initial segment. (Note that the geodesic v, \7,
is isolated from both sides — in this it 1s very different from leaves of geodesic
laminations on surfaces without boundary.)

DEFINITION 3.2. For a geodesic 7, of finite respectively infinite type we
say that it fills the surface in finite respectively infinite time if all punctures
lie in different path components of S\v,. By contrast, a geodesic ~, does

not fill the surface if S\, has a path component that contains two punctures.
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The aim of the rest of the paper is to prove the following theorems. Recall
that every point o € (0,7) gives rise to a — possibly partial — ordering of
MCG(S). The first theorem gives criteria for these orderings to be total or,
equivalently, for the orbit of a to be free.

THEOREM 3.3. Let S be any hyperbolic surface.

(a) If a geodesic v, does not fill S, then the orbit of o € (0,7) is not
free.

(b) If o is of finite type, then the converse holds as well: if v, fills the
surface, then o has free orbit.

(¢) Let T := {a | Yo is of infinite type} C (0, 7). Then I is uncountable,
and all but countably many of its elements have free orbits. In any neighbour-
hood of an o € I there exist points of both finite and infinite type, i.e. there
are o # a and (B € (0,7) such that v, €T and v3 ¢ T.

The next theorem gives a classification of orders of Thurston-type.

THEOREM 3.4. If S is a punctured disk, we have :

(a) An ordering cannot be both of finite and infinite type.

(b) Given two geodesics 7y.,7Vs Of finite type, one can decide whether or
not they determine the same ordering.

(c) Given two geodesics 7,,7s of infinite type, one can decide whether
or not they determine the same ordering. For instance, if 7, and ~yg are
embedded, then they determine the same ordering if and only if § = A*()
for some k € Z (i.e. if vg is obtained from -y, by sliding the starting point
2k times around OD,).

(Note that part (a) is not immediately clear: it is conceivable that finite and
infinite type geodesics induce the same orderings.) In fact, we shall develop
machinery which gives a very good and explicit understanding of finite type
orderings :

THEOREM 3.5. There are only finitely many conjugacy classes of orderings
of finite type of MCG(D,) = B,. The number N, of conjugacy classes can
be calculated by the following recursive formula

n—2
Ny=1 and Ny=N_1+> (;=7) Ne N
k=2
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We do not know if there exists a “closed” formula for N, . The following
list gives the first few values:

oo s a]s ] s 7] s
RN ERERERRERET

Theorems 3.4 and 3.5 almost certainly generalise to mapping class groups
of other negatively curved surfaces, but in order to keep our machinery simple,
we stick to the special case of punctured disks.

4. ORDERINGS OF MAPPING CLASS GROUPS USING CURVE DIAGRAMS

In this section we present another method for constructing left orderings
on B,, using certain diagrams on D,, which we call curve diagrams. Both
the definition of curve diagrams and the orderings associated to them are
generalisations of similar concepts in [9].

CONVENTION. Whenever we talk about geodesics in D,,, we think of the
punctures as being holes in the disk, whose neighbourhoods on the disk have
the geometry of cusps. By contrast, when we talk about curve diagrams, we
think of the punctures as distinguished points on, and belonging to, the disk,
and we ignore the geometric structure. This changing perspective should not
cause confusion.

DEFINITION 4.1. A (partial) curve diagram I is a diagram on D,, consisting
of j < n—1 closed, oriented arcs which are labelled I'j,....T;. Moreover,
the boundary circle of D, is labelled Ty, and by abuse of notation we shall
refer to it as an “arc” of I'. We require:

(D) every path component of D,\I" has at least one puncture in its interior,

(2) U{:o int(I';) is embedded and disjoint from the punctures (where int
denotes the interior),

(3) the starting point of the i™ arc lies in UZ:O I't, i.e. on one of the
previous arcs,

(4) the end point of the i™ arc lies in one of the previous arcs, or on an
earlier point of the i arc, or in a puncture.

In the special case that j = n — 1, so that in (1) every path component
contains precisely one puncture, we say I" is a total curve diagram.
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FIGURE 2

Examples of total curve diagrams on Dy
(The meaning of the equality signs will be explained in §5.)

REMARKS. For simplicity we shall sometimes label arcs O,...,j, in-
stead of Iy,...,I. Moreover, we shall use the abbreviated notation
Tou..ui == U};ZO ['y. Note for (1) that the number of path components of
D,\I" equals 1 plus the number of arcs of I" not ending in a puncture, so it
can be anything between 1 and n. Note for (3) that the start point of the i™ arc
can lie in a puncture, if this puncture was the end point of one of the previous
arcs. Finally note that if i <j then I'; is disjoint from the interior of 1.

We now explain how to associate a partial left ordering of MCG(D,) = B,
to a partial curve diagram (with total curve diagrams giving rise to total
orderings). The essential ingredient in this definition is the well-known
procedure of “pulling tight” or “reducing” two properly embedded curves
in a surface. In brief, two simple closed or properly embedded curves in a
surface can be isotoped into a relative position in which they have minimal
possible intersection number, and this relative position is unique. Moreover, it
can be found in a very naive way: whenever one sees a D-disk (or “bigon”)
enclosed by a pair of segments of the curves, one “squashes” it, i.e. one
reduces the intersection number of the two curves, by isotoping the arcs
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across the disk. A systematic exposition of these ideas can for instance be
found in Section 2 of [9].

Our definition of the ordering of MCG(S) associated to a curve diagram
will be a variation of the definition in [9]. We briefly remind the reader of this
comparison method. Let T" be a partial curve diagram in which all j arcs are
embedded (no curve I'; has end point in its own interior), and let ¢ and
be two homeomorphisms of D, . If o(Iy) # ¥(I;), then we will define either
w < 1 or 1 < p, according to the following rule. There is an i < j such
that o(T'gu...ui—1) and Y(Tgy...ui—1) are isotopic, whereas o(I'gyu...u;) and
Y(Tou...ui) are not. Then we replace ¢ by an isotopic map, also denoted ¢,
such that the restrictions of ¢ and ¢ to I'gy...u;— are exactly the same maps.
At this point, ¢(I;) and ¥(I";) have the same starting point and lie in the same
path component of D,\o(Tou...ui—1). Next we “pull o(T;) tight” with respect
to (1), 1.e. we 1sotope ¢ so as to minimise the number of intersections of
o(I';) and ¥(I7;), as described above. This can be done by an isotopy which
fixes w(I'gy...ui—1). Restricting finally our attention to small initial segments
of ©(I';) and ¥(I';), we see that the two curves set off from their common
starting point into the interior of a component of D,\¢(I'o...u;—1) in different
directions, one of them “going more to the left”; if it is (I';) say, then we
define ¢ > 1), otherwise 1 < ¢. The resulting (possibly parital) ordering is
left invariant, because the relative position of x o (I') and x o (') is the
same as that of ¢(I") and /(I") for all x € MCG(S).

We shall use the following variant of this comparison method: first we
make o(I'gy...ui—1) and YPToy...ui—1) agree for maximal possible i, as before.
If the arc I'; is embedded, then we proceed as before to compare ¢(I';) and
w(I'y). If the arc T'; has end point in the interior of I itself, then we consider
the embedded arc I’} which, by definition, is obtained from I’ by sliding
the end point back along I'; so as to make start and end point-coincide, as

illustrated in Figure 3. We then ignore the original arc T, and compare o(I')
and ¢(I7}) as before.

I'; I

FIGURE 3
The embedded arc T obtained from T by sliding the end point



292 H. SHORT AND B. WIEST

DEFINITION 4.2. The ordering defined in this way is the ordering
associated to the curve diagram TI.

LEMMA 4.3. The ordering associated to a curve diagram T is total if
and only if T is a total curve diagram.

Proof. If T is total, ie. if all components of D,\I" are once-punctured
disks, then any homeomorphism of D, which fixes I' is isotopic to the
identity; this follows from the Alexander trick (see e.g. [21]). Conversely, if
D,\I" has a path component which contains at least two holes, then we can
push the boundary curve of this path component slightly into its interior, to
make it disjoint from I'. A Dehn twist along such a curve is a nontrivial
element of B,, and acts trivially on I". [

EXAMPLE. For any n, the Dehornoy ordering [6] is defined by the diagram
consisting of n — 1 horizontal line segments, connecting 0D, to the first
(leftmost) hole, the first to the second hole, and so on. The arcs are oriented
from left to right, and labelled 1,...,n — 1 in this order (see [9]).

DEFINITION 4.4. A (possibly partial) order on a group G is discrete if the
positive cone P = {g € G| g > 1} has a minimal element. (If the ordering
is total then this element is necessarily unique.)

In a group with a discrete total left-invariant order every element has a
unique predecessor and successor. We note that an ordering is non-discrete if
and only if for all a,c € G there exists a b € G such that a < b < c.

LEMMA 4.5. The total ordering associated to a total curve diagram T is
discrete.

Proof. The curve diagram Igy...u,—2 (which is obtained from I' by
removing the arc of maximal index) cuts D, into a number of once-punctured
disks and one twice-punctured disk. We observe that the unique smallest
element is the positive half-twist interchanging the two punctures inside this
disk. [

REMARK. It is an easy exercise to prove that the partial orderings
associated to partial curve diagrams are in general not discrete. However,
we shall see in the proof of Theorem 3.4(a) that even such orderings have a
certain discreteness property.
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5. WHICH PAIRS OF CURVE DIAGRAMS DETERMINE THE SAME ORDERING ?

In this section we define an equivalence relation of curve diagrams which
we call loose isotopy. We give a simple algorithm to decide whether or not two
given curve diagrams are loosely isotopic. We prove that two curve diagrams
determine the same ordering if and only if they are loosely isotopic. Moreover,
the quotient of the set of loose isotopy classes of curve diagrams under the
natural action of B, is finite; we deduce that for fixed n > 2 there is only a
finite number of conjugacy classes of orderings arising from curve diagrams.

DEFINITION 5.1. Let C denote the space of all curve diagrams, equipped
with the natural topology (the subset topology from the space of all mappings
of n—1 arcs into D, ). We define loose isotopy to be the equivalence relation
on C generated by the following two types of equivalence:

(1) Continuous deformation : two curve diagrams are equivalent if they lie
in the same path component of C.

(2) Pulling loops around punctures tight: if some final segment of the
curve I'; say cuts out a disk with one puncture from D,, then this final
segment can be pulled tight, so as to make I'; end in the puncture.

FIGURE 4

Pulling loops around punctures tight

Equivalence (2) is illustrated in Figure 4; here the dashed lines indicate
any number of arcs of index greater than i which start on I';. Equivalence
(1) says that one is allowed to deform the diagram, to slide starting points
of arcs along the union of all previous arcs, including their start and end
points, and even across punctures, if they are the end points of some previous

arcs. Similarly, end points of arcs are allowed to slide across the union of all
“previous points of the diagram”.

In order to get a feel for the meaning of this definition, the reader may
want to prove that the equality signs in Figure 2 represent loose i1sotopies.
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THEOREM 5.2. (a) Two curve diagrams determine the same ordering of
B, if and only if they are loosely isotopic.

(b) There is an algorithm to decide whether or not two curve diagrams T’
and A are loosely isotopic.

Proof. For the implication “<” of (a) we have to prove that loosely
isotopic diagrams define the same ordering. The only nonobvious claim here
is that the ordering is invariant under the “pulling tight” procedure.

In order to prove this, we consider a curve diagram I with j arcs, the i
of which is a loop (i.e. the end point equals the start point) which encloses
exactly one puncture. We consider in addition the curve diagram I' which
is obtained from I by squashing the curve Il to an arc from the starting
point of T" to the enclosed puncture, much as in Figure 4. Let ¢ and v be
two nonisotopic homeomorphisms, and more precisely assume that ¢ >p 1.
Our aim is to prove that © >p Y. If ©o(Tgy...ui—1) and YT oy...ui—1) are
already nonisotopic then this is obvious since the first i — 1 arcs of I" and I”
coincide. On the other hand, if (I'gy...u;) and Y(Igy...u;) are isotopic (and
the difference between ¢ and 1 only shows up on arcs of higher index),
then after an isotopy the first i arcs of o(I") and ¥ (I") coincide as well, and
the result follows easily. Finally in the critical case, when the first difference
occurs on the i™ arc of I", we have the two arcs ¢(I';) and 1(I';) which are
reduced with respect to each other, with (I';) setting off more to the left.
The crucial observation is now that the boundary curves of sufficiently small
regular neighbourhoods of the two curves are isotopic to (I"}) respectively
Y(T?) and reduced with respect to each other — see Figure 5. It is now clear
that o(T") also sets off more to the left than 1(I"}). This completes the proof
of implication “<=" of (a).

We shall now explicitly describe the algorithm promised in (b), and prove
the implication “=-"" of (a) along the way. The proof is by induction on n.
For the case n = 2 we note that any two total curve diagrams (with one arc)
are loosely isotopic. Thus there are only two loose isotopy classes of curve
diagrams : the empty diagram and the one with one arc. The empty diagram
induces the trivial ordering, whereas the diagram with one arc induces the
ordering 0¥ > ol <= k > [. So the desired algorithm consists just of
counting the number of arcs, and non loosely isotopic curve diagrams do
indeed induce different orderings.

Now suppose that n > 3, that the result is true for disks with fewer than
n punctures, and that we want to compare two curve diagrams I,...,I; and
Ag,...,Ay in D,, with j,j’ <n—1. The arc T'; ends either on 8D, or in
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()
oI7)

)
eTi—1) = YpTi-1) PI)

FIGURE 5

Proof that ¢ >r 1 = ¢ > ¢ — the critical case where the first difference
between ¢ and 1) occurs on the arc which is being pulled tight

the interior of I'; itself, or in a puncture. In the first two cases D,\I'; has
precisely two path components. At most one of them can contain only one
puncture; if one of them does, we pull T} tight around it. If both components
of D,\I'| contain more than one puncture and if I'; ends on itself, then we
slide the end point of I'; back along I'j, across its starting point, and into
'y = OD,. There are now two possibilities left: either I'; is an embedded
arc connecting the boundary to a puncture (I'; is nonseparating), or it is an
embedded arc connecting two boundary points, cutting D, into two pieces,
each of which has at least two punctures in its interior (I'y is separating).
We repeat this procedure for A;. There are now four cases:

(1) It may be that I'} 1s separating, while A; is not (or vice versa).

(2) It 1s possible that I'; and A; are both nonseparating but are not
isotopic with starting points sliding in 0D, (a criterion which is easy to
check algorithmically).

(3) It is possible that Iy and A; are both separating but are not isotopic as
oriented arcs, with starting and end points sliding in 0D, (a criterion which
is equally easy to check algorithmically).

CLAIM. In these first three cases the orderings defined by T and A do
not coincide, and T" and A are not loosely isotopic.

We only need to prove the first part of the claim, the second one follows
by the implication “<” of Theorem 5.2(a). We first treat the following
pathological situation: if, in case (3) above, I'; and A; are isotopic to each
other, but with opposite orientations, then a homeomorphism of the type
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=
/

FIGURE 6

A homeomorphism which distinguishes the I'- and A-orderings

indicated in Figure 6 is positive in the ordering defined by I', but negative
in the A-ordering. In all other situations allowed by (1), (2) and (3), there
exists a simple closed curve 7 in D, which is disjoint from I'y, but intersects
every arc isotopic to A;. (Consider, for instance, a regular neighbourhood of
0D, UT, in D,. If T, is nonseparating then its boundary curve has this
property; if I'; is separating then at least one of the two boundary curves
has.) We denote by T': D, — D, the positive Dehn twist along 7. The map T
leaves I} invariant, while the arc T(A;) is “more to the left” than A; (to see
this, reduce the two arcs by making them geodesic, and apply Proposition 2.4).

Similarly, there exists a curve 7' which is disjoint from A;, but not from
any arc in the isotopy class of I';. Then T’ ~1 sends T(A;) more to the right,
but not very far: 7’ 1o T(Ay) is still to the left of the arc A;, which is fixed
by T’"l; and 7'~! sends I'y to the right, as well. Thus, in summary, the
composition 7’ 16T sends A; more to the left but I'} more to the right, so
that /"' o T € B, is negative in the ordering determined by I', but positive
in the A-ordering. This proves the claim. (One may find simpler proofs, but
this one will be useful in Section 7.)

(4) The remaining possibility is that I'} and A; can be made to coincide
by isotopies which need not be fixed on 9D, . Such isotopies can be extended
to loose isotopies of I" or A.

To summarize, we can algorithmically decide whether or not there is a
loose isotopy which makes I'y and A; coincide. If the answer is NO (cases
(1)—(3)), then T" and A are not loosely isotopic, and the orderings defined by
I" and A do not coincide. In this case, the implication “=-"" of 5.2(a) is true. If
the answer is YES (case (4)), then D,\I'; = D, \A; has either one or two path
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components, each of which is a disk with at most n — 1 punctures. Moreover,
the arcs I,...,I; form curve diagrams in these disks (with some indices
missing in each curve diagram, if the arcs are distributed among two disks),
and similarly for A, ..., Ay . Finally, the following conditions are equivalent:

(i) I" and A are loosely isotopic,

(i) in each path component of D,\I'; = D,\A; there is a loose isotopy
between the diagrams made up of the remaining arcs of I' respectively A,

(iii) the orderings of Fix(I';) C B, induced by I' and A coincide, where
Fix(I';) denotes the subgroup whose elements have support disjoint from I,

(1v) the orderings of B, defined by I' and A coincide.

The equivalences between (i) and (ii), and between (iii) and (iv) are clear,
whereas the equivalence of (ii) and (iii) follows from the induction hypothesis.
Also by the induction hypothesis, we can decide algorithmically whether or
not (ii) holds. This proves the theorem in case (4). [

We recall that for any ordering “<” of B,, and every element
p € B, = MCG(D,), one can construct an ordering “<,”, by defining
© <p 1 = pp <Pp, and we call <, “the ordering < conjugated by p”.
We observe that if < is induced by a curve diagram I', then <, is induced by
the curve diagram p(I"). Thus two curve diagrams T" and A induce conjugate
orderings if and only if T and A are in the same orbit under the natural
action of B, on the set of loose isotopy classes of curve diagrams.

PROPOSITION 5.3.  Let M, denote the number of conjugacy classes of total
orderings of B, arising from curve diagrams. Then M, can be calculated by
the following recursive formula

n—2

My=1 and My=M, +> (377) My My_y.
k=2

REMARK. In order to avoid confusion, we recall our orientation conven-
tion: we are insisting that “more to the left” means “larger”. It is for this

reason that there is only one ordering of B, = Z, not two, as one might
expect.

Proof. 'We shall count the orbits of the set of loose isotopy classes of total
curve diagrams under the action of B,. The case n = 2 is clear, since there

is only one loose isotopy class of curve diagrams. Now suppose inductively
that the formula is true for up to n — 1 strings.
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For every total curve diagram in D, there are two possibilities :

(a) the first arc of the curve diagram ends in a puncture or can be pulled
tight so as to end in a puncture;

(b) the first arc cuts D, into two disks, each of which contains at least
two punctures.

For case (a) we notice that the first arc can be turned into the horizontal arc
from —1 to the leftmost puncture, by an action of some appropriate element
of B,. There are now precisely M,_; orbits of loose isotopy classes of curve
diagrams of the remaining n — 2 arcs in the n — 1-punctured disk D, (the
first arc). So case (a) gives a contribution of M,_; orbits.

The argument for case (b) is similar: the action of an appropriate element
of B, will turn the first arc of any curve diagram of type (b) into the vertical
arc, oriented from bottom to top, having k punctures on its left and n — k
on its right, for some k € {2,...,n—2}. In this case, there should be k — 1
arcs on the left and n — k — 1 arcs on the right of the first arc, so there are
(Z:?) ways to distribute the remaining n — 2 arcs over the two sides. Finally,
there are M) respectively M,_; orbits of loose isotopy classes of total curve
diagrams on the disk on the left respectively on the right. [

6. REPLACING FINITE TYPE GEODESICS BY CURVE DIAGRAMS

In this section we prove the main theorems on orderings of finite type.
The strategy is to associate to every geodesic of finite type a curve diagram
such that the (possibly partial) orderings arising from the geodesic and the
curve diagram agree. Thus we obtain, via curve diagram orderings, a good
understanding of finite type orderings.

Proof of Theorem 3.3 (a). If D,\7, has a path component which contains
at least two holes, then we can push the boundary curve of this path component
slightly into its interior, to make it disjoint from 7,. A Dehn twist along
such a curve will be a nontrivial element of B,, and act trivially on ~,. [J

We now define the curve diagram C(vy,) associated to a geodesic vy, of
finite type. It is a subset of ., more precisely a union of segments of -y
which start and end at self-intersection points. The diagram will be disjoint
from the punctures, except that the last arc may fall into a puncture. For
simplicity we shall write I for C(v,) and, as before, I'gy...ui—1 for j;lo Iy.
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FIGURE 7

A geodesic and (in bold line) its associated curve diagram

The definition is inductive. We define I'y = 0D,,. Now suppose that we
have already found I',...,I;—;. So every path component of D, \Tou.-ui—1
is a disk containing at least one puncture. We put down a pencil at the end
point of I';_;, start tracing out -y,, drawing an arc T} (with “p” standing
for “potential”’, because I? is potentially the new arc I7;). We continue
drawing either up to the next intersection with T'oy...u;—, or up to the first
self intersection of IV, or until v, falls into a puncture, whichever comes
first. We now decide whether or not I¥ has cut one of the components of
D, \I'ou...ui—1 1In a nontrivial way, i.e. whether it has either fallen into a
puncture or cut one of the components of D,\I'gy...ui—1 into two, both of
which contain at least one puncture. If yes, we let I'; := I'Y, and have finished
the induction step. If not, we rub out I, and start a new IY at the next
intersection point of 7, with D,\Tou...ui—1. (This intersection point is just
the end point of the previous I}, unless this endpoint is in the interior of the
previous IY . Note that in this latter case not only IV, but the entire segment
of the geodesic 7, up to its next intersection point with I'g....;—; cuts the
disk in a trivial way.) |

There 1s one special rule: if in the construction process we obtain an
arc IV which spirals ad infinitum towards a simple closed geodesic, then we
define I to be the arc with end point in its own interior containing I} in a

regular neighbourhood, as shown in Figure 8 (this arc is unique up to loose
1sotopy).




300 H. SHORT AND B. WIEST

FIGURE &

The curve diagram associated to a geodesic which spirals towards a closed geodesic

Since at most n — 1 arcs can be constructed in this way, the process
terminates after finitely many steps. We observe that the curve diagram C(7,)
is total if and only if the geodesic ,, fills D, . More generally, two punctures
are in the same path component of D,\7, if and only if they are in the same
path component of D,\C(v,). We also note that for every geodesic 7, and

¢ € B, we have C(0(7a)) = ©(C(7a)).

THEOREM 6.1. For any o € (0,7) and p € B, we have:
)
(a) if the curve diagrams ¢(C(7,)) and C(vy) are isotopic then p(a) = «;

(b) if (C(va)) > C(vy) (in the curve diagram sense) then we have p(a) > «
in R.

COROLLARY 6.2. For every geodesic -y, of finite type (where o € (0, 7)),
the ordering of B, associated to o by Remark 1.2(1) coincides with the
ordering associated to the curve diagram C(v,) by Definition 4.2.

Proof of the theorem. We shall need a generalisation of the concept of re-
lative “reduction” of two simple curves in D,, to the case where one of the two
curves is authorised to have self-intersections, but no D-disks with itself. For
instance, we shall be interested in the case where one of the two curves is a sim-
ple geodesic, and the other is a homeomorphic image of a non-simple geodesic.

Suppose that C is a disjoint collection of simple closed geodesics and
properly embedded geodesic arcs connecting distinct punctures in D,,. Then
we Say that () 1s reducible with respect to C if there are D-disks enclosed
by ¢(7v,) and C, i.e. if there are finite segments of ¢(7,) and of C with the
same start and end points which are homotopic with fixed end points. If ()
is not reducible then we say it is reduced with respect to C. Equivalently,
any component of the preimage of ¢(v,) in the universal cover D; intersects
any component of the preimage of C at most once.
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LEMMA 6.3. One can pull p(v,) tight with respect to C, Le. there exists
an isotopy of @ which makes p(v,) and C reduced with respect to each
other.

Proof. The proof is an easy exercise — it is in fact similar to the proof
of the “triple reduction lemma” 2.1 of [9]. [

We need some more notation. We still write I" for C(vy,), denote by j
the number of arcs of I', and consider the partial curve diagrams I'oy...ui—1
for i € {1,...,j}; all their arcs are geodesics. Every path component of
D,\T'gu...ui—1 contains at least one puncture in its interior. The boundary
curve of each component with at least two punctures is isotopic to a unique
simple closed geodesic, which bounds a disk (with these punctures in its
interior) in D,. Removing all these disks from D, yields a planar surface
with a number of geodesic boundary components (one of them being 9D,
the others corresponding to the at least twice punctured components of
D, \Tou...ui—1) and a number of punctures (corresponding to once-punctured
components of D,\I'gu...u;—1). We denote this surface by NTgy..ui—p; it
is a regular neighbourhood of 0D, U I'g....ui—; in D,, and contains the
complete initial segment of the geodesic 7, up to the starting point of the
arc I'; C v,

We are now ready to prove the theorem. For part (a) suppose that we are
given « € (0,m), and ¢ € B,, and that the curve diagrams I' and o(I") are
isotopic. Then we can modify the map ¢ by an isotopy which fixes D, such
that the restriction ¢|yr becomes the identity map. But by construction of
I' = C(74), the geodesic v, is entirely contained in NI', and is thus mapped
identically. This proves part (a) of the theorem.

For part (b) suppose that we are given o € (0,7) and ¢ € B,, and that
for some i € {1,...,/} the curve diagrams T'y,....;—; and o(loy...ui—1) are
isotopic, whereas ¢(I';) is “more to the left” than I';. Our aim is to prove
that p(o) > a, Le. that the end points of the liftings of (vy,) and ~y, on
OD,\IT1 = (0, 7) are different, with that of ©(v,) being “higher” in Figure 1.

Firstly, the map ¢ sends I'g....;—1 to a curve diagram which is isotopic
to I'gy...ui—1 ; therefore we can assume, after an isotopy of ¢ which fixes
0D,,, that the restriction ©|Nro.. i, 18 the identity map. Note that -y,
being a geodesic, is already reduced with respect to the collection of

geodesics ONTg...ui—1, and therefore ©(Ye) 18 also reduced with respect
to (9NF0U...U,'_1 = <p(8NFOU...Uf_1).
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Next, we note that the arc I'; will cut precisely one of the components
of D,\NT¢y...ui—1 in two, and leave the other components untouched. This
critical component is an at least twice punctured disk, and we shall denote it by
D.. The preimage of D, in the universal cover D, has many path components,
but we shall be interested in one particular component D, namely the one
which is cut in two by the segment corresponding to I'; C vy, in the geodesic
Yo in Dj,.

We now distinguish three cases: firstly, the arc I'; falls into a puncture
inside D, ; secondly, the arc I'; has its end point in NIgy...ui—1 (either on
['ou...ui—1 or in the initial segment I'; N NTgy...u;—1 of I7;); thirdly, the end
point of the arc I lies in the interior of D, (and then necessarily in the
interior of I7).

The first case is the easiest: by an isotopy of ¢ which 1s fixed outside
D. we can pull oI7;) N D, tight with respect to I'; N D.. The effect of this
isotopy is to make the images of the liftings &(J,)ND. and F, ND, disjoint,
except for the common starting point. Moreover, both liftings run inside D,
all the way to the circle at infinity. By the hypothesis that o(I') > I', we have
that an initial segment of (7,) lies to the left of the corresponding segment
Yo, and we conclude that its end point on the circle at infinity also lies more
to the left. This proves the theorem in the first case.

LEMMA 6.4. If v is a (finite or infinite) geodesic starting on the boundary
of the punctured disk D., and if @ is an automorphism of D, which acts
nontrivially on ~y, then two liftings of v and ¢(y) to the universal cover D;
of D. with the same starting point in 0D; have end points either on different
components of OD; (if v is finite) or on different points at infinity (if v is
infinite). [

In the second case, we can pull the arc ¢(I;) N D, tight with respect to
I'' N D. by an isotopy of ¢ as in the first case, thus making their liftings
disjoint (except for the common starting point). We now have by hypothesis
that the point of intersection of @(I7) with D7 where @(I7;) exits D; lies to
the left of the one of I';. By the previous lemma, the two points will even lie
on different boundary components of D7, and therefore there is a point of D7
between these two boundary components which lies on the circle at infinity.
For the liftings of our geodesic and its image this means the following: 7,
and ©(7,) enter 0D; at the same point, but exit into different components of
D;\D7, with @(7,) choosing the one that lies more to the left. Since 7, and
©(Yo) do not intersect dD; again, they stay inside their chosen component of




ORDERINGS OF MAPPING CLASS GROUPS 303

D;\D;. Hence we have for their end points that ¢(a) > «, and the theorem
is proved in the second case.

We now turn to the third case, which includes the possibility that v,
spirals towards a closed geodesic inside D.. We consider the arc X := T
as in Figure 3, and for simplicity we choose X to be a geodesic arc. We
denote by D, C D, the subdisk cut off by X (so that ¥ = 0D, ). Since X 1S
geodesic, we have that -y, N D, is reduced with respect to Y. After an 1sotopy
of ¢ inside D. we can assume by Lemma 6.3 that the first component of
(Vo) N D, (the one that contains (I';) N D.) 18 also reduced with respect
to ¥. By the hypothesis that o(I;) sets off more to the left than I, we are
now in one of the situations indicated in Figure 9.

at least one puncture
inside Dc¢

at least one puncture
inside Dcc

at least two punctures inside
Dc, separated by ¢(I7)

FIGURE 9
The critical disk D, containing I'; and ¢(I'})

A first possiblity is that an initial segment of o(I;) N D, lies to the left
of the tip of D.. (Figures 9(a) and (b)); in the universal cover D; we now
have three arcs, namely ©(7,) N D, a lifting of X, and 7, N D7 (and, in
fact, a fourth arc, another lifting of X) starting at the same point of 0D,
and setting off into different directions, namely in the given order from left to
right. Moreover, the liftings of X are disjoint from the interiors of the other
two arcs, by reducedness. Thus the end point of @(7,) N D; on 9D lies
more to the left than that of 7, N D;. Even stronger, by Lemma 6.4 they lie
either on different points at infinity (in which case we are done) or they leave
D; through different components of 0D; (in which case we argue as above
that their remainders are trapped in different components of D;\D;, so that
©(Vo) stays to the left of ~,).

The second possibility is that some initial segment of (1) N D, lies in
D.. (Figure 9(c)); then D, cut along this initial segment, has precisely two
path components, each of which contains at least one puncture. Since ¢(I7;)
is oriented, we can refer to them as the “left” and the “right” half of D... We
now consider a geodesic arc o which is embedded in the right half of D

CC
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starts at the tip of D, (i.e. at the same point as I'; N D, and oI;) N D,),
and falls into one of the punctures in the right half of D... By construction,
Yo NV D¢ 1s reduced with respect to o, since both are geodesics, and the first
component of ¢(y,) N D, is even disjoint from o. In the universal cover we
now have that the lifting ¢ of ¢ ends on the circle at infinity, thus separating
ECC into two components, the left one containing the lift of ¢(v,) N D,., and
the right one the lift of v, N D... Thus lifts of these two curves, not being
allowed to intersect any component of dD;. and dD; more than once, go on
to hit different points of 9D,,, with ((7,) staying more to the left than 7, .
This completes the proof of the third case, and thus of Theorem 6.1.  []

Proof of Theorem 3.3 (b). If ~, fills D,, then C(v,) is a total curve
diagram, and thus induces a foral ordering of B,,. By Corollary 6.2, the ordering
of B, associated to the point a € (0, 7) agrees with this ordering. [

Proof of Theorem 3.4(b). For any two geodesics <, and 7yg of finite
type one can work out their associated curve diagrams C(v,) and C(vg). By
Corollary 6.2 it is sufficient to decide whether or not the orderings associated
to the two curve diagrams coincide, which can be done by Theorem 5.2. [

Proof of Theorem 3.5. It only remains to be proved that N, = M,, (where
M, 1s given in Proposition 5.3), 1.e. that every curve diagram is realized up
to loose isotopy as C(vy,) for some geodesic ., « € (0,7). This is left as
an exercise to the reader. L]

7. ORDERINGS ASSOCIATED TO GEODESICS OF INFINITE TYPE

In this section we prove the results concerning orderings of infinite type,
and explain the essential differences between finite and infinite type orderings.

We start by describing in more detail than in Section 3 the structure of
geodesics of infinite type. We define the curve diagram C(v,) associated
to a geodesic of infinite type by precisely the same inductive construction
procedure as in the finite type case. Except for a finite initial segment, the
last arc I'; will lie in some path component D, of D,\NTou...uj—1, the only
difference with the finite type case is that I; goes on for ever, without falling
into a puncture and without spiralling. The closure of I’ inside this critical
component D, is a geodesic lamination; the lamination has no closed leaves,
for such a leaf would have to be the limit of an infinite spiral of I’; (see [17,
Appendix]). All self-intersections of the geodesic v, occur inside the finite
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initial segment up to the entry into the punctured disk D, : in particular, there
are only finitely many self-intersections.

Proof of Theorem 3.3 (c). We are studying the set
:={a € (0.7) | 7o is of infinite type}.

The proof uses standard results from the theory of geodesic laminations and
the Nielsen-Thurston classification of surface automorphisms [35, 17].

That Z has uncountably many elements follows from the fact that there
are uncountably many geodesic laminations of D,. only countably many of
which fall into infinite spirals. A more practical way of seeing this is to
choose arbitrarily a fundamental domain of D, by fixing n geodesic arcs,
e.g. as shown in Figure 1. Thus the fundamental domain 1s a 2n + 1-gon
with one boundary edge corresponding to 9D, and n pairs of boundary
edges which are identified in D,. A segment of the geodesic between any
two sucessive intersections with the boundary of the fundamental domain
consists of an embedded arc connecting different edges of the 2n + 1-gon.
Hence constructing a geodesic of infinite type amounts to choosing an infinite
“cutting sequence” of the geodesic with the boundary arcs of the fundamental
domain. Often the choice will be forced upon us by the requirement that the
geodesic be embedded, but there will be an infinite number of times when
we have a genuine choice. Thus the set of all possible sequences of choices
1S uncountable.

The cutting sequence approach also makes it clear why any neighbourhood
of an a € Z in (0.7) contains points a’ # a of Z as well as 3 € (0.7)\Z.
Given a € (0.7) and € > 0O, there exists an N. € N such that all geodesics
~¢ whose cutting sequences agree with the one of ~, for at least N, terms
satisfy |a — &) < e. Now for any a € Z and € > 0 we can find a geodesic
7o+ Of infinite type whose cutting sequence diverges from the one of v, only
after the N.™ term. On the other hand. we can construct a geodesic ~v3 with
la — 3] < e which fills D, in finite time: just choose it to have a cutting
sequence which agrees with the one of ~, for N, terms. and to then career
off along some path which decomposes D, into disks and once-punctured
disks.

Finally, the last part of Theorem 3.3(c) holds because each of the countably
many elements of B, fixes only a countable number of points a € (0.7) with
the property that ~, fills D,. In order to see this, we note that for irreducible
elements of B, Theorem 5.5 of [5] states that there is only a finite number of
fixed points on the circle at infinity. If an element » of B, 1s reducible, then

e
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we leave it to the reader to check that the result follows from the following
facts :

(1) One can find a maximal invariant system C of disjoint properly
embedded arcs and circles in D, .

(2) If ¢ acts nontrivially on a component of D,\C which is cut in a
nontrivial way by a finite segment of -, then it acts nontrivially on v, (for
if it didn’t then the collection C would not be maximal).

(3) A geodesic vy, that fills D, has to enter every component of D,\C
at least once, and ¢ acts nontrivially either on the first or, failing that, on
the second component of ~y, N(D,\C) (because it cannot act trivially on two
adjacent components of D,\C).

(4) There is a countable infinity of isotopy classes of embedded arcs from
the basepoint of D, to C. [

We recall from the beginning of the section that to every geodesic vy, of
infinite type we have associated a “critical disk” D, which contains most of
the last arc of C(v,). The fundamental property of geodesics of infinite type
which we shall use several times is the following.

LEMMA 7.1. For any geodesic of infinite type -y, and for any € > 0
there exists a geodesic Yo+ with a© € (a, o+ €) such that .+ falls into a
puncture and has no self-intersections inside D..

Proof. 1t suffices to prove the lemma in the special case D, = D,, i.e.
when the geodesic. 7, is embedded. We suppose, for a contradiction, that
there exists ‘ane > 0 such that no g with 8 € (o, o + €) is embedded and
falls into a puncture. Our aim is to reach the contradiction that v, ends in
an infinite spiral.

We continue to use the notions concerning cutting sequences introduced
above: we choose arbitrarily a fundamental domain, and we shall denote by
vk the initial segment of <y, up to its k™ intersection with the boundary
of the fundamental domain. We recall that, given 7, and ¢ > 0, we can
find an N = N, € N such that any geodesic g with ,yzﬁv = N satisfies
|a — B3] < €. We now consider the arc v¥*!: it ends on some boundary arc
of the fundamental domain which we denote a. The orientation of ~y, gives
rise to a notion of the part of a “to the left” and “to the right of” the end
point of Y¥+1. The arc 4/¥*! has an intersection with the interior of the “left”

(8%
part of a, for if this were not the case we could obtain an embedded arc g
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with 3 € (o, + €) by adjoining to the end point of N an arc falling into
the puncture at the left end of a; this would contradict the hypothesis. Thus
it makes sense to define T' C D, to be the union of vY ! and a segment of
a from the end point of v¥*! to the left, up to the next intersection with
ANF1 (see Figure 10).

FIGURE 10

The two possible shapes of I', and (dashed) the resulting geodesic vq

We now observe that D,\I" has two path components, each containing at
least one puncture; moreover, 7y, cannot intersect any geodesic arc connecting
two punctures in the same component, because the first time it did we could
drop it into the puncture at the left end of the arc and obtain a contradiction
as before. It follows that ~y, has to spiral along the boundary of one of the
components of D,\I". [

PROPOSITION 7.2. All orderings, even partial ones, arising from geodesics
Yo Of infinite type are non-discrete.

Proof. We shall prove the following stronger statement: for any ¢ > 0
there exists an element ¢ € MCG(D,) = B, such that v(a) € (o, @ + €).

We choose a™ as in the previous lemma. We consider the boundary curve
7 of a regular neighbourhood of 0D, U v,+ in D.. This curve 7 is disjoint
from .+, while any curve isotopic to 7 necessarily intersects -y, . Thus for
the positive Dehn twist T along 7 we have that T(a) > « (by Proposition
2.4), and that T(at) = o™ . It follows that T(a) € (o, ™) C (o, v +¢€). [

Proof of Theorem 3.4(a). Given a geodesic -, of finite, and a geodesic

7s of infinite type, our aim is to prove that -y, and g cannot induce the
same orderings of B, .
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As seen in Corollary 6.2, orderings arising from geodesics which fill the
surface in finite time are the same as orderings arising from total curve
diagrams, which are discrete by Lemma 4.5. By contrast, we have from
Proposition 7.2 that infinite type orderings are not discrete. This proves
the theorem in the special case where the finite type geodesic fills the
surface.

In the case where the finite type geodesic v, does not fill the surface, we
consider the subsurface D, := D,\NC(,,), i.e. the maximal subsurface with
geodesic boundary which is disjoint from -, . We observe that D, is a disjoint
union of disks, each containing at least two punctures. Any homeomorphism
¢ of D, with support in D, has the property that (o) = «.

If Do, Ny # @ then there exists a homeomorphism ¢ with support in
D, such that o(8) # 3, and it follows that the orderings induced by « and
(G are different.

If, on the other hand, D, N~z = <, then we squash each component of D,
to a puncture; the result is a disk with say m punctures, where m < n, which
we denote D,,. We now consider the subgroup BY of B,, = MCG(D,,) of all
mapping classes which fix those punctures of D,, that came from squashed
components of D, . This is a finite index subgroup of B,,, and the orderings
‘of B, determined by o and (3 induce quotient orderings on B! . Another
way to describe these quotient orderings is to repeat the Thurston-construction
for the disk D,, : one can equip D,, with a hyperbolic metric, and then the
geodesics 7y, and g project to quasigeodesics in D,,. These quasigeodesics
determine points at infinity of the universal cover of D,,, and hence give rise
to orderings of B, .

The geodesic in D,, which is homotopic to the projection of v, is again
of finite type; the crucial observation now is that it fills D,,, so that the
quotient ordering on B is discrete by Lemma 4.5. Similarly, a geodesic
in D,, homotopic to the projection of g is again of infinite type, hence
induces, by Proposition 7.2 a non-discrete ordering on B, , and thus also on
the finite-index subgroup B . So the «- and (-orderings on B, give rise to

different quotient orderings on B’ , and are therefore different.  []

As seen above, every geodesic of infinite type gives rise to a curve diagram
“of infinite type”, which is like a curve diagram of finite type, except that the
arc with maximal label is, up to isotopy, an infinite geodesic which does not
fall into a puncture or a spiral. All but a finite initial segment of this arc lies
in the “critical disk” D.. There is an obvious generalisation of the notion of
loose isotopy :
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DEFINITION 7.3. Two curve diagrams of infinite type are loosely isotopic
if they are related by (1) continuous deformation, i.e. a path in the space of
all curve diagrams of infinite type; and (2) pulling loops around punctures
tight.

This is exactly the same as in the finite type case, except that no “pulling
loops around punctures tight”-procedure is defined for the last arc. We are
now ready to state and prove the main classification theorem for orderings of
B, of infinite type.

THEOREM 7.4. Two geodesics v, and g of infinite type give rise to the
same (possibly partial) ordering of B, if and only if their associated curve
diagrams C(v,) and C(vyg) are loosely isotopic.

Proof. By the results in the previous sections, it suffices to prove that
two embedded geodesics v, and g of infinite type give rise to the same
ordering of B, if and only if 5 = A*(«) for some k € Z, i.e. if 7, and 3
are related by a slide of the starting point around 0D,.

The implication “<=" is clear. Conversely, for the implication “=", we
suppose that v, and g are not related by a slide of the starting point,
and without loss of generality we say a > (. Our aim is to construct a
homeomorphism which is positive in the «- and negative in the (-ordering,
i.e. which sends o “more to the left” and § “more to the right”. Our argument
will be a refinement of the proof of the implication “=" of 5.2(a).

By Lemma 7.1 we can construct embedded geodesics ~y,+ and 7yg+ which
fall into punctures, and lie an arbitrarily small amount to the left of ~,
respectively 3. We define the curves 7,+ and 75+ to be the geodesic
representatives of the boundary curves of regular neighbourhoods in D, of
0D, U~q+ and 0D, U g+ respectively. We denote by T, respectively Tg+
the positive Dehn twists along these curves. Our desired homeomorphism will
be of the form T_f o Tg+, with carefully chosen values of o and 8*, and
k € N very large.

We also define the two-sided infinite geodesic 7, to be the geodesic
which is disjoint from -y, , and isotopic to the boundary of a neighbourhood
of v, UdD, in D,. More formally, in the universal cover D we consider
two liftings of ~,, namely 7, (which starts at the basepoint of D}), and the
liftigg whose starting point also lies on I and is obtained from the basepoint
of D, by lifting the path once around 0D, . The end points of these geodesics

—— e
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lie on the circle at infinity, and 7, is just the projection of the geodesic
connecting them.

Since 7, and g are not loosely isotopic, we have that vz intersects 7.
By choosing B sufficiently close to 3 we can now achieve that the initial
segments of g and ~yg+ up fto their first point of intersection with 7, are
isotopic with end points sliding in 7, . This gives our choice of /T, and it
remains to choose o and k.

The crucial observation concerning 7, is that it can be arbitrarily closely
approximated by the curves 7.+, by choosing a™ sufficiently close to «.
More precisely, in the universal cover D, we consider the preimages of 7, and
of 7,+. Each of them has infinitely many path components; we choose one
distinguished component for each, namely the first ones that 5 intersects. Our
observation now is that as ot tends to «, the end points of the distinguished
component of the preimage of 7.+ tend to the end points of the distinguished
component of the preimage of 7.

We now turn to the choice of at. By Proposition 2.4 we have that
Tg+(a) > a. By Lemma 7.1 we can now choose a™’ close to a such that
Tg+(a) > a™ > «. By possibly pushing o™ even closer to «, we can
in addition insist (by the observation concerning 7, above) that the initial
segments of g and g+ up to their first point of intersection with 7.+ are
also isotopic with end points sliding in 7.+ . This gives our choice of a™.

We have arrived at the following setup: we have the three points
Bt = Tge(BY) > Tg+(B) > B in OD,\II, and they all lie between the
two end points ¢; and 6, of the distinguished lifting of 7.+ (here the indices
[ and r stand for “left” and ‘“right”, so 6, > 6,). For any point 6 with
o > 6 > 6, we consider the action of the positive Dehn twist 7,+ on the
geodesic 5. We observe that the limit limy_, o T;f(&) = 6,. In particular for
6 := [ it follows that for sufficiently large & we have T;f (81) < . This
gives our choice of k.

To summarise, we have
T foTgi(a) >T e =at >a
and
T f o Tge(B) < Tof o Tpr (B7) = T £(8) < B,
ie. T;f o Tg+ 1is positive in the -, but negative in the [-ordering. [

Proof of Theorem 3.4(c). This is an immediate consequence of Theo-
rem 7.4. [J
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