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Now let 7 € pg—'FoZ,, and let {r;}3°, be a sequence in pg~'FoZ, with
7. > 0 for each i, such that 7, — 7. We are working with polynomials, so
that

—IAC ‘IAC
lim ((‘] . )m,xm-)— (q . )ﬁn,xm))

—1 —IAC
b— <q kAC>)8,17X(T) - <q k )Bn,x(())a

which must be in Z,[x] since the limit of any sequence in Z,[x] must also
be in Z,[x]. Now let n' be a positive integer, and consider

tim (74 Bux— (72) Bur ) = (1) B ()= () B x(0)))

= (7% Bu™)= (7% B @) = () B x(1) - (%) B 1))

The quantity on the left must be 0 modulo gZ,[x], which implies that the

value of
~lA ~lA
(q k );Bn,x(’r) — (q k >6}2,X(0)

modulo gZ,[x] is independent of n.  [J

4.4 (GENERALIZED BERNOULLI POWER SERIES

In [9] we find a definition of ordinary Bernoulli numbers of negative index,
B_,, where n€ Z, n>1, in the field Q,, given by

(26) B—n == kl—lsnolc Bqﬁ(p")——n)

where the limit is taken in a p-adic sense. Note that ¢(p*) — 0 in Z, as
k — oc. Since |B,, |p is bounded for all m € Z, m > 0, we must have

2 5(p*y—n—
By = lim (1-p*" ") Booty—n

k—oc

= Jlim — (6 (1) ~ W) 1, (1~ (9 () — ) s77)

k—oc

=nL, (n+ Lw™) .

implying that the limit exists and can be described in familiar terms.

Recall that B,, = 0 for any odd m € Z, m > 3. Thus (26) implies that
B_, =0 for any odd n € Z, n > 1. Furthermore, we have the following :

[ S
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THEOREM 4.13. Let n € Z be even, n > 2. Then

B+ > %EZP,

r prime
(r—Djn

where each prime r is taken to be a rational prime.

REMARK. Since 1/r € Z, for any rational prime r # p, this implies that
B_,+1/p € Z, whenever (p—1)|n, and B_, € Z, otherwise.

Proof. By the von Staudt-Clausen theorem, we know that

for any even me€ Z, m > 2.

Let n € Z be even, n > 2. For any integer k > 2, ¢(p*) is even and
(p—1) | &(p*). Thus ¢(p*) —n is even, and (p — 1) | n if and only if
(p— 1) | (¢(p*) — n). Therefore, if k is sufficiently large,

1
By pky—n + Z - €Z,,

r prime
(r—Din

and the result follows from (26). ]

In a similar manner we define generalized Bernoulli numbers of negative
index, B_, ,, where n € Z, n > 1, in the field C, according to
(27) B_n>X - lim B¢(Pk)_"»X7

k— o0

where the limiat*is once again taken in a p-adic sense. For each m VE Z,m>0,
the quantity |Bm,x|p is bounded. Thus, since x4,x) = x for all characters x
and for all k€ Z, k> 1, we can write

B = lim (1—x k(p)pd’(pk)—”_1 By o
—n,X A ¢(p ) ¢(P )_n7X¢,(pk)

= lim — (¢ (p) —n) L, (1= (¢ (¢") — 1) 1 xn)

k— o0

= an (n+ 1;xn) ,

so that the limit exists. Since By pr_n1 = By(pty—n for n,k € Z, with n > 1
and k sufficiently large, we obtain B_,; = B_, for all such n.
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If k> 2, then ¢(p¥) is even. Thus n and ¢(p*) — n are of the same
parity. Recall that
{ 1, if x 1s odd
1o, if x 1s even.
Then By pty—n, = 0 whenever n # 6, (mod 2), provided (P —n > 1.
Because of this, the relation (27) implies that B_,, = 0 whenever
n# 0, (mod 2) for all n € Z, n > 1. Furthermore, we can obtain

THEOREM 4.14. Let x be such that x # 1, and let n € Z, n > 1. Then
FiB-nyx € Lplx].
Proof. Recall that when x # 1, fiBny € Z[x] for all me Z, m > 0.
Thus
FiBnx = kl_in;ofxB¢(pk)—rz,x
must be in the p-adic completion of Z[x] for any n € Z, n > 1. Since the
p-adic completion of Z[x] is Zy[x], the theorem must hold. [

We now define what we shall refer to as generalized Bernoulli power series
of negative index in Z,[x]. For n € Z, n>1, and for 1 € C,, 1|, < |q],,
let

B_nx(®) = klfgo By pry—nx (D) -
Then

. by,
B, x(qt) = kgrgo(B(b(pk)_n,xd)(pk)(qt) — X¢(pk)(p)p¢(” )—n—1

= lim —(¢(p") =)Ly (1 = (¢(p") —n), 1 x)
= an(n + 1,1 Xn) .

—1
B¢>(p"')~n,x¢(pk) (p qt))

Since L,(n+1,¢;x,) exists for each n € Z, n > 1, and 1 € Cy. t|p <1,
we see that B_, ,(qf) must also exist for such ¢. Thus B_, (1) exists for

te Cy, |t|, <lgl,- Now, by Theorem 4.5, we can expand this quantity as a
power series, obtaining

oo

- 1
B_, (gt =n Z < (nm+ )> q"t"L, (n +m+ 1; Xrl+m)

m=0

[~ +1D\ , . 1
=n 3 (O )b

e n+m

= [—n
- Z - )B*(wm),xqum -

m=0
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. -1 —1
Since |B_gumxl, < max{|pl; ", £, >"} and

()= ()
m m

this sum converges for Iqt{p < 1. Thus we have the relation

(28) B—n,x(t) = Z (:’:)B—n——m,xtm»

m=0

converging for all ¢ € Cp, |f|, < 1. Note that this is in the same form as
(2) for the generalized Bernoulli polynomials having positive index, which we

can rewrite as
> /n
Bn,x(t): § <m)Bn—m,xtma

m=0

since (;’1) =0 for myneZ, m>n>0. By setting ¢t = 0 in (28), we see
that B_, ,(0)=B_,, forall n€Z, n> 1.

THEOREM 4.15. Let n€ Z, n > 1. Then for any m € £, m > 1, such
that q | mf,,

mfy

B_nx (mfy) =B_nx(0)=-n > x(a)a """

a=1
(a,p)=1

Proof. By definition, since |mf, L, < lal,

B_nx (mfy) = B-nx(0) = kli)ﬂ;o (Botpy—nx (M) = Bo(ptr—n,x(0)

mfy

— i (¢ (pk) _ n) Zx(a)aqﬁ(pk)—n—l’
a=1

k—o0

following from (4). Now, v,(¢(p*)) = k — 1, and a®?) = 1 (mod p*) for
(a,p) = 1. These imply that

mfy mfy
. k——n— _—n—
Jlim (¢ (p") = n) ;:1 x(@a? P = —p a§:1i x@a ",

(a,p)=1

completing the proof. [
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THEOREM 4.16. Let n € Z, n > 1. Then for all x and for all t € Cp,
1], <1,
B—n,x(—t) - (_I)HX(—I)B—n,x(t)-

Proof. Since

(0.0]
—n m
By =) (m >B_n_m,xr ,

m=0

and B_,_, x = 0 whenever n+m # 6, (mod 2) foreach meZ, m>1, we
see that B_, ,(¢) is either an odd or an even function according to whether
n+ 6, is odd or even, respectively. Thus

B_p(—1) = (=1)"™™xB_, . (1)
= (—1)"X(=1)B_n (),

and the proof is complete. [
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