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THEOREM 4.3. Let te Cp, \t\ < 1, and s G D, except s ^ 1 if x~ 1-

Then

Lp(s, -r; x) *; x) •

Proof From Lemma 4.2 we see that

£«(-0 x(-DW).
Also, (20) implies that

cw(-0 » x(-1)^(0-
From (16), whenever n > — 1,

«n(-0 X(-lKWî
which implies that

LpC*, -f; x) X(~ l)£PCs, *; x) • Q

If x(— 1) — 1 and r= 0, then

Lp(s,0;x) -Lp(s, 0;x),

which implies that

£pfox) ~Lp(s;x),

and thus Lp(s\x) — 0 for all s £Q, as we would expect.

4.2 Lp(s,t;x) as A power series in r- a, a G Cp, \a\ < 1

To develop Lp{s, t\ x) in terms of a power series in £ will enable us to
find a derivative of this function with respect to this second variable. All this

we shall do, but before doing so we need to specify some notation.

LEMMA 4.4. Let t G Cp, |t\p < 1. Then for n E Z, n > 1,

lim ^JLpCj + w^jx) -- (1 - x(p)P_1)^o,x
\ n J n v 7

Proof Recall that, from Theorem 3.13, we can write

/ oo

f; x) ~yry + 53 ~ 1)m'

m=0

where a_i(0 (1 — x(p)P~l)Bo,x- Thus
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lim(i - 1)LP(5, f, x) (l - X(P)P ') Bo,x •

Now let nZ, n>1, and consider

lim ()LJs + n,t,x) 1im[n
s->\-n \ n J s->i \ n J

If n — 1, then we write this as

lim(l - s)Lp(s, t\ x) ~ (1 - X(P)P~1) Bo,x •

s—> 1

If n>2,then
1

"~2 1

— lim TT (n-5-/)-,ni î-»i xx n
i=0

which implies that

lim )L„(j + n,f,x) ~7 f limTT(n - s -ï))(lim(l -s^i-n \ n ni \s^îfA / \s~+\
i=0

-- (1 - X(l)Bo
n v

^ — x

Therefore the lemma holds for all n > 1.

Now, because Lp(s,t; 1) is undefined when s 1, the quantity

^jLp(s + n,t\ 1)

is undefined when s \ — n, for n e Z, n > 1. However, Lemma 4.4 shows

that this quantity exists as s —» 1 — n. In the following we will encounter

expressions that involve (~~ns)Lp(s + n, t; x), and because of Lemma 4.4 we
shall assume the understanding that

1—s

n
Lp(s + n, t\ x) --(l~X(p)P l)Bihx

s=l-n n

for n G Z, n > I.

Theorem 4.5. Let t e Cp, \t\ < 1, and s e ®, except s ^ 1 if x— 1-

Then

00 /— \
(21) Lp(s, r, x)Y,(Jj (s + ; Xm)

m—0 ^ ^

Proof. Let f G Cp, |r|/; < 1, and let k E Z, k > 1. Then
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fk 1 \ 1

m
)<FtmLp(l-k + m">Xm) -j.dctk(î--Xk(p)P~l)Bo,x

m=0 ^ '

+ E ~0- (* - «);x)•
m=0 ^ '

By evaluating the L-function, we obtain

C
w

1)Z,p(-1 ~~ ik~m)\Xm)-| Q j (l -
and thus

oo /1 -j \
J2( ~

J1mtmLp(l — (k — m)\Xm)
m=0 ^ m '

-\E {%(!"
m=0 ^ '

which implies that the sum converges for s 1 — k. Breaking this into two
sums

OO /1 1 \
E \qmrLp(\-{k-m)-Xm)
m=0 ^ '

-\è è C v"
m=0 ^ ' m=0 ^ ^

BKxk{qt)- Xk(p)pk~lBkM(p-V))

Lp(1 — k, t;x)Thus (21) holds for a sequence {1 — k}^ that has 0 as a limit point.
Lemma 2.5 then implies that Theorem 4.5 holds for all s in any neighborhood
about 0 common to the domains of the functions on either side of (21).

Now we will show that the domains, in s, of each of the functions on
either side of (21) contain D, except s ^ 1 when % 1.

This is obvious for the function Lp(s> t\ x) • Consider the function

OO / \ OO OO / \

^(m,)</V%(,+^Xm. E E
m=0 m=0 n=—l

We have seen that this sum converges for s — 1 — k9 where k e Z, k > 1.

Now we need to show that it converges for s £, where (gD, £ ^ 1 if
X 1, and £ 1 — k for k G Z, k > 1. So let £ satisfy these restrictions,
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and let e > 0. Note that |£ — 1 \p <r,wherer l\q\p
1

- Let r$ G R,
0 < r0 < r,such that |£ - 11 r0. Then for any Z, m > 0,

]£ + m- 1| p<max||m|p, |£ — l|p|
< max {1, r0}

implying that + + / 1. Let 6 G R such that r6 max{ 1, r0}.
Then 0 < 6 < 1, and

(22) |£ + m-l| p<r6.
Let N\ e Z such that

Then for any me Z, m > 1, such that m>N\, we must also have

< e.-

For me Z, m > 1, consider

+ m - 1)- <K~'kim

Note that, by (22),

(£ + m - 1)
1 lÉ+m-ll/ïï

(£ + m — 1)

1-e-V- 1)L

-1

/=1

Therefore

qmfa-ltXm(£i + m - 1)

and from the bound

m !L>|p|?-1)/(p~I).

we obtain

+ m — 1)_1 < \p-lq\p\p\;{X~6)(m~mp-l\q\(y6){m-l.

Thus if m>N\, then

qmtma-i^Xm{£j + m — 1)~ < 6.
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Now let N2 G Z such that

\fxP\,

Then we must also have

< e.

for any m,n e Z such that m > 0, n > 0, and max{m, n} > N2. Let us

consider

^an,Xm^ + m- !)" f-c\<
\mjp

KKxJJe + m-ir
where m,n e Z, m>0,n > 0. For all 0,

< Hirv»,
and by utilizing this along with (17) and (22), our expression becomes

-e
m

</VXXra(£ + m- 1)" <\m\(n+\)\r{\fxp\-\6^\q m-\-n

Since

\m\{n+\)\\ >\pt+n)/(p-l\
we obtain

m
qmfnantXm{i + m-l)n

Thus if max{m, n} > N2, then

^r^,Xw(e+m-ir < e.

Let N max{Ni,N2}, and let m,n G Z, m > 0, n > — 1. Then for
max{m,n} > iV, it must be true that

-0 qmflan^Xm{£)^m- 1f < 6.

Thus, by Proposition 2.4, the sum
OO OO / j.\

EE " +»-i)"
m=0n=:-l ^ '

must converge. This implies that the function on the right of (21) must converge
for all s ED, except s ^ 1 if x — 1

»
and the theorem must then hold.

Since we can now express Lp(s) t; x) in terms of a power series in t, we
can take a derivative of this function with respect to t.
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Lemma 4.6. Lett e Cp, \t\p < 1, except s f 1 1-

Then
dn (—isA
—Lp(s, /; x)

m

for n G Z, > 0.

Proof. If n — 0, then the lemma is obviously true. So consider n — 1.

Applying Proposition 2.6 to (21),

<9
00 7 iS"\

—Lp(s, t; x)X f Jjqmrn(s + m;
m— 1 ^ ^

Now,

\m / \m — \ J
so that

o 00 / -j \
—LP(J, t;x)X^ J_ 1

o + Xm)

/n=l ^ '
°° /— — 1 \X m

(5 + 1 +
m=0 ^ 2

-qsLp(s+ l,/;xi) •

Now suppose that

cf1 f—s\
q^lp(s, t;x) n\q"{

for some n £Z, « > 1. Then

Q1+i a /a« \" oi\dr
n[q"{n)jtLp{s + n^Xn)-

From the case for n 1, we see that

(7) Iip (*+ X"} (7)(~* "n)qLp

(n +\)\qn+l ^ ^ ^jLp l,*;x„+i)
Therefore

/ \
g^Lpis,t-x) — (« + 1)!9"+1 („ + !(5 + « + 1, r;X11+1)

and the lemma must hold by induction.
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With this result, we can derive a more general power series expansion of
Lp(s,t\ x)'

THEOREM 4.7. Let te CL, Iii < 1, and se D, except s 7^ 1 if x — 1
•

TTzerc/or aeCp) la^ < 1,

00 /— \
x) L m)qm^~~ a'>mLp ^ + m'a''Xm) '

m=0 ^ '

Remark. Note that Theorem 4.5 is the case of a 0 here.

Proof It follows from the Taylor series expansion of Lp(s,t;x) in the

variable t about a (see Proposition 2.6) that we can write Lp(s,t;x) in the

form
oo

Lp(s, t\X) X^j ßntt - a)m'
m=0

where

m! dtn
6>n '...7 \ '

From Lemma 4.6

and so

1 <9m

âï^5'r; x)
m

J ^ '

ßm — )q o; Xm) 7x m '

completing the proof.

4.3 Relating Lp(s, t; x) to some finite sums

From (4) it becomes obvious that the generalized Bernoulli polynomials
have a considerable significance in regard to sums of consecutive nonnegative

integers, each raised to the same power, itself a nonnegative integer. The

following illustrates how this can be extended with the use of Lp(s, t\ x).
For the character x» let Fo lcm(/%, q). Then fXn | F0 for each ne Z.

Also, let F be a positive multiple of pq~lpQ.
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