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260 G.J. FOX

THEOREM 4.3. Let t€ Cp, |t|, <1, and s €D, except s #1 if x = 1.
Then

Ly(s, —t;x) = X(=DLy(s, 1 X) -

Proof. From Lemma 4.2 we see that

bn(—=1) = x(=1)bn(1) .

Also, (20) implies that
Cn(-t) = X(—‘l)cn(t) .

From (16), whenever n > —1,
an(—1) = x(—Dan(1),

which implies that

Ly(s,—t;x) = x(=DLy(s,t;x). [

If x(—1) = -1 and t =0, then

L,(s,0;x) = —Ly(s,0; x),

which implies that
Ly(s;x) = —Lp(s3 %)
and thus L,(s;x) =0 for all s € D, as we would expect.

4.2 Ly(s,t;X) AS A POWER SERIES IN 1 —a, a € C,, |a|, <1

To develop L,(s,t;x) in terms of a power series in ¢ will enable us to
find a derivative of this function with respect to this second variable. All this
we shall do, but before doing so we need to specify some notation.

LEMMA 4.4. Let t € C,,

tlpgl. Then for n€ Z, n>1,

1
— (1 —x(p)p™") Boy -

lim (':> Ly(s+nt;x) =

s—1—n

Proof. Recall that, from Theorem 3.13, we can write

LP(S) £ X) = a—l(? + Zam(t)(s - 1)m,
m=0

where a_1(t) = (1 — x(p)p~ DBy, . Thus
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hq@—lﬂﬂ&mxﬁzofﬁﬂpm—”Bwp

Now let n € Z, n > 1, and consider

— , n—s
lim ( S>Lp(s +n,tx) = hrr% < , >Lp(s, 1 x) -
b Yo o

s—1—n n
If n =1, then we write this as
lim(1 — $)Ly(s, 1530 = — (1 = x(P)P™") Bos -
S—

If n> 2, then

which implies that
_ 1 n—2
lim ( ) )Lp<s 6 = — (}gq g(n —5— z)) (tim(1 = )Ly(s,50)

|
=—;(P—MPW"UBWV

Therefore the lemma holds for all n > 1. L]

Now, because L,(s,#;1) is undefined when s = 1, the quantity

—S
<n>g@+man

is undefined when s =1 —n, for n € Z, n > 1. However, Lemma 4.4 shows
that this quantity exists as s — 1 — n. In the following we will encounter

expressions that involve (~°)L,(s + n,#;X), and because of Lemma 4.4 we
shall assume the understanding that

(_S> L,(s +n,tx)
n

forneZ, n>1.

1
- (1 —x(p)p™") Box

s=1—n

THEOREM 4.5. Let t€Cy, [t]|, <1, and s €D, except s # 1 if x = 1.
Then

o0

@1) L(s,t:0 = Y (;j) gLy (s + 13 Xom)

m=0

Proof. Lett€C,, |t|, <1, and let k € Z, k> 1. Then
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k

k—1 r—1
"L (1 — (K — m); Xn) .
+mz_0< - >6] p(1 — (kK —m); Xm)
By evaluating the L-function, we obtain

k—1 1/k
( m >Lp (1 - (k - m); Xm) - _E <m> (1 - Xk(p)pk—m—l) Bk—m,xk )

and thus

(e o]

Z k—1
m:0< m )qmtmLpU — (k= m); Xm)
:——Z< ) e 1_Xk(p)pk " I)Bk m, Xk )

which implies that the sum converges for s = 1 — k. Breaking this into two
sums

= (k—1\ 1 _
Z( " )q "Ly (1= ke m3 xm) = —24“4(1 = Xe(P)P ™ )Box,

m=

oo

k—1
_S_ ( >qmrmLp (1 - (k—m)aXm)
m

m=0
k k
1 k " 1 _ k —m_m
= —-% g <m>Bk—m,qu "+ }C‘Xk(p)pk ! E :(m>Bk~m;ka q "
m=0

m=0

1
= =1 (Brx(a) = ()P B, (P a1))

=L, (1 -k 1:X) .

Thus (21) holds for a sequence {1 — k}2, that has O as a limit point.
Lemma 2.5 then implies that Theorem 4.5 holds for all s in any neighborhood
about 0 common to the domains of the functions on either side of (21).
Now we will show that the domains, in s, of each of the functions on
either side of (21) contain ®©, except s # 1 when x = 1.
This is obvious for the function L,(s,;x). Consider the function

> (D)aenesmxn =3 3 (7)a a4t m— 1

m=0 m=0n=-—1

We have seen that this sum converges for s =1 —k, where k€ Z, k > 1.
Now we need to show that it converges for s = &, where £ € D, £ # 1 if
x=1,and £ #1—k for ke Z, k> 1. So let ¢ satisfy these restrictions,
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and let € > 0. Note that [§ — 1| < r, where r = |p|;/(p—1)|q|p_1. Let rp € R,
0 <rp <r, such that |[{ — 1| =ro. Then for any m € Z, m > 0,
[E+m—1], < max{|m|p, 1€ — llp}

<max {l,r},

implying that £ +m € ©, £ +m # 1. Let § € R such that ° = max{1,r}.
Then 0 <6 < 1, and

(22) | [E+m—1], <.

Let Ny € Z such that

’*(1*5)(1\71—1)/(P—1)’ql(1—5)(N1—1)
P

p™ql,Ipl, <e.

Then for any m € Z., m > 1, such that m > N;, we must also have

—(1=8)(m—1)/(p—1)) _(1=6)(m—1)
| lgl,

p'q] Ip], <e.

<—£>@>+m——n—1
m

= [¢ +m —ll”H - “(l_l)‘

< ;oD

For m € Z., m > 1, consider

() raerm—07] <ipl;aly

P

p
Note that, by (22),

'(;f)(&m— 1)*

Therefore

< Ipl, 'lglym!], o,

p

<;§> qrtma_iy,(E+m—1)7!

and from the bound
(m—1)/(p—1)
imf‘p Z |p‘p ?

we obtain

l (;f) q"t"a_y ., (E+m—1)""

Thus if m > N;, then

— —(1=6)(m—1 - — -
P

‘ (;1§> g t"a_1y,E+m -1 <e.

p
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Now let N, € Z such that
—1;_ —(1=8)N2/(p—1 1—8)N
|fepl, pl, OO g (7O <

Then we must also have
p| " p| A= O tm/ (=1 1 (1=6)om+
4fX ‘p | Ip ( Ym+n)/(p )|‘]|§; Ym+n) <€

for any m,n € Z such that m > 0, n > 0, and max{m,n} > N,. Let us

consider
= ‘ ( m )
p

_5 m n
(m>q trnan,xm(§+m_ 1)

where mn € Z, m> 0, n> 0. For all m > 0,
()] < meen
mJlp
and by utilizing this along with (17) and (22), our expression becomes
("5> " ", (€ +m — 1)
m

Since

1917 | JE+m — 112,
P

< |mltn+ DU fpl, P gt
14

ml(n + D], > |p|+/ 7D,

we obtain
(‘5)4%%%KA5+4n—1Y
m
Thus if max{m,n} > N,, then
l (:f) g " apy, (E+m—1)" <e.
p

Let N = max{N;,N,}, and let mn € Z, m > 0, n > —1. Then for
max{m,n} > N, it must be true that

(’6) G ", (€ 4+ m — 1)
m

=1 (—(1—=6)m+n -1 1=8)(m+n
< 1l pl, TR g e,

p

<E€.
p

Thus, by Proposition 2.4, the sum

> (;f) " " @y, (€ + m— 1)"

m=0n=—1
must converge. This implies that the function on the right of (21) must converge
for all s € ©, except s # 1 if x = 1, and the theorem must then hold. [

Since we can now express L,(s,f;x) in terms of a power series in , we
can take a derivative of this function with respect to f.
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LEMMA 4.6. Let t € Cp, |t|, <1, and s €D, except s # 1 if x = 1.
Then

14

—g—L (s,t;x) = nlg" ( )L (s + 1,8 Xn)

for ne Z, n> 0.

Proof. 1If n =0, then the lemma is obviously true. So consider n = 1.
Applying Proposition 2.6 to (21),

0 - =S\ m —
§Lp(s,t;x) = n;l (m)q mt" ILp (s + m; Xm) -
Now,
()= (1)
m = —S 5
m m—1
so that
QL (s, ; )__i(_) —s—1 mlm—lL (s + m; )
6tp HX _m—-l ’ m—1 1 p S > Xim
N
= *C]SZ ( )memLp (S + 1+ m;X1+in)
m=0

= —gsL, (s + 1,6, x1) .
Now suppose that

71

8”L (s,t;x) = n! ”( )L (s + 1,1 Xn)

for some ne€ Z, n> 1. Then
n+1 6 an

—s\ O
= nlg’ ~L :
nq (n)@t p(5+n>t’Xn)-

From the case for n = 1, we see that

nf—S\ O _ wl =S
nlg <n>—(—9—tLp(s+n,t,Xn):n!q <n>(—s~n)qu (s+n+1,t;xn+1)

i -8
=+ 1lg +1 <n+ 1>Lp (s—!—n+ 1,t;x,,+1) )

Therefore
n-+1

n-+1 -
L5 60 = (4 Dlg (Hl)Lp(wnH,z;an),

and the lemma must hold by induction. [
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With this result, we can derive a more general power series expansion of
LP (Sa [N X) .

THEOREM 4.7. Let t€ Cp, |t|, <1, and s €D, except s# 1 if x = 1.

Then for o € C,, oz|p <1,
[~
L,(s,t;x) = Z;O <m>qm(z‘ —a)"L, (s +m, a; Xm) -

REMARK. Note that Theorem 4.5 is the case of o = 0 here.

Proof. It follows from the Taylor series expansion of L,(s,#; x) in the
variable ¢ about o (see Proposition 2.6) that we can write L,(s,?; x) in the
form

Ly(s,5X) = Y _ Pt — @)™,
m=0

where
Y41

~ m! o

B Ly(s, %)

=«
From Lemma 4.6

1 o™

m) Om

S
L,(s,t;x) = ( m )q’”Lp(S +m,t; Xm) ,

and so

B = <m>q L,(s +m, o Xm) ,

completing the proof. [

4.3 RELATING L,(s,t;x) TO SOME FINITE SUMS

From (4) it becomes obvious that the generalized Bernoulli polynomials
have a considerable significance in regard to sums of consecutive nonnegative
integers, each raised to the same power, itself a nonnegative integer. The
following illustrates how this can be extended with the use of L,(s,1; x).

For the character x, let Fy = lem(f,,q). Then f,, | Fo for each n € Z.
Also, let F be a positive multiple of pg~'Fy.
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