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22 P. BAUM AND A. CONNES

The Novikov conjecture is that

(L(M) U/*(a), [M])

is an invariant of oriented homotopy type, where L(M) is the total L class

of TM and a is any element in H*(BG\ Q).
Kasparov [19] and Miscenko-Fomenko [21] [22] define a map

K0(BG) K0 C*G

and prove that the Novikov conjecture is implied by its rational injectivity.
This enabled them to prove the Novikov conjecture for any discrete subgroup
of a linear Lie group. The relation with our conjecture is clear from the

following commutative diagram

KoiBG) > Ko C*G

\ /
and the Proposition of § 6 above. (In this factorization, the topological definition
of K-homology given in [9] is being used.)

COROLLARY 5. (Stable) Riemannian geometry conjectures of Gromov-

Lawson-Rosenberg [30].

For the same reason our conjecture implies the stable1) form of the

Riemannian geometry conjectures of Gromov-Lawson-Rosenberg [30] on

topological obstructions to the existence of metrics of positive scalar curvature.

8. Twisting by a 2-cocycle

This section is motivated by the papers [16], [26], [29], on the range of the

trace for the C*-algebra of the projective regular representation of a discrete

group.
All of §2 adapts to the projective situation where together with the

G-manifold X one is given a 2-cocycle y G Z2(X xi G, S1). For simplicity we

1 Paul Baum comments : It is important to emphasize "stable" because Thomas Schick has

shown that the original unstable Gromov-Lawson-Rosenberg conjecture is false. On the other hand,
Stephan Stolz (with contributions from J Rosenberg and others) has proved that the real form
of Baum-Connes implies the stable Gromov-Lawson-Rosenberg conjecture Also, Max Karoubi
and I have proved that the usual (i e complex AMheory) form of Baum-Connes implies the real
form of Baum-Connes
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shall stick to the case X pt • and G discrete F ; then 7 G Z2(F, S1)

is a map : T x T —» Sl such that :

7(52,53)7(5i92, 93F17(9i, 9293) 7(9i, 92)-1 1 for every 31,92,93 T

Given a proper T-manifold Z, a (r, 7)-vector bundle on Z is a smooth

(complex) vector bundle E on Z together with a smooth map E x r — E

such that (with 1t: E Z the projection) :

a) H£g) HO9 for each I £ £> 9 £ F ;

b) £(0102) « 7(Si> P2)(£pi)P2 for each g\,g2 £ T.

In b), 7(01,02) S1 is viewed as a complex number of modulus 1. As in

§2, we let V^p }(Z) be the collection of triples (E0,EU(j) where Eo,E\ are

(r, 7) -vector bundles over Z and a is a smooth morphism of vector bundles

such that:

1) H£g) Ö-(Op for each £ £ £0, 9 £ T ;

2) Support (cr) is T-compact.

The groups /^r7)(Z) are then defined as in [5], [31]. The Thorn isomorphism
as formulated in §2 still holds in this context, and this allows us to define

Gysin maps :

h\: K^rz^ ^ K{rn)(rz2)

for a T -map h of the proper T -manifold Z\ to the proper Y-manifold Z2.

Thus as in §2 we can define the geometric group also in this twisted
situation, we denote it by K*(X,G) in general, and =/£*(-,T) in our special
case.

Let then C*(r, 7) be the reduced C*-algebra of the pair (r, 7), i.e. the

C*-algebra generated in £2(Y) by the projective regular representation À of T :

(A g)0( g ')7 (9,9_19') 09_19') •

As in §2 we get a map fi from AT*(pt,T) to Kt(C*(r,j)), where /r(z,0 is
the analytical index of the üT-cocycle (Z, 0 The only part of the
construction which is modified by the presence of 7 is that of the C*-module
over Cr*(r, 7) attached to a (F, 7)-bundle E on the proper Y-manifold Z. More
precisely, one starts with the space Cc(Z,E of compactly supported
continuous \ -density sections of E and, after choosing a Y-invariant metric
on E, one defines:

(00 (9) / (0 (r]xg)9~l) for each g G T
Jx
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which gives a Cc(T)-valued sesquilinear form on Cc(Z,E®Q}/2). One checks
that for any £ C Cc(Z, Zs®^1/2), (£,£) is a positive element of C*(F), since
for any 77 £2(T) one has :

ivA((Ç,0)v) te) te) (A (A) 7?) (5)

5Z'>'te,A"1g)^(5)'7(A_15) f (£*,(£* A) A-1)
Jx

X^^te)»7(A_15) J {Ocg-OgAicg-^yh-1 9) >0.

Then, by completion with respect to the norm || (£, £) ||1//2# one gets a

C*-module over C*(T, 7), which we denote by L2(Z, E). The right action
is given by :

(CO M X)(Êcfl-')P/te) for each $ e Cc(Z,£ ® Q1/2), / 6 Cc(T)
r

Next, we can choose a T-invariant Riemannian metric on Z, represent every
class in K^r^(T*Z) by a pair Fo, Fi of (r, 7)-hermitian bundles on Z and

a symbol cr which is an isomorphism of the pull back of Eo to S*Z to that

of and is independent of £, 7r(Q z, outside a T-compact subset of Z.
Letting Pa be the corresponding order 0 pseudo-differential operator, one gets a

Kasparov (C, C*(F, 7)) -bimodule: the triple (.L2(Z,E0), L2(Z,£i),Pa) which
gives an element of Ko(C*(T,j)). It is important to give another description
of the map p: K^r^(T*Z) —> K0(Cp(r,7)), using Kasparov products.

PROPOSITION 1. a) Let X be a proper r-manifold, then K1^ ^(X) is

canonically isomorphic to KfC^X) x7 T), where Cq{X) x7 T is the twisted
crossed product of C$(X) by T.

b) (Compare [19]). For any C*-algebras A,B on which T acts by

automorphisms, one has a natural map from KKr(A,B) to KK(A x7T, B x7r).

Proof a) One can consider A C0(X) x7 T as the C*-algebra of the

groupoid IxT G with units G(0) X, source and range maps s(x, g)=xg,
r(x, 9) — x and composition (x, g) • (x', g') (x, ggf) with the 2-cocycle 7 o it
where it is the natural homomorphism G —> T : 7r(x, g) g.

Thus A is the completion of this convolution algebra Cc(G) :

ifi *h) (x,g)(x, h)f2(xhA-1 g)7(A, A-1 g)
r

fix, 9) =f(xg,g~l)
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with the norm ||/|| Sup |K(f)|| where for each x G X the representation

7 rx of Cc(G) in f(T) is given by :

CXx(f) 0 ig) Xy(x5_1 »h) £(Ä_1 9) 7(fc>5) for each £

r
Now, given a (F, 7)-vector bundle E on X,one can endow E with a

F-invariant hermitian metric and define a C*-module E over A Co(X) x7T
as follows. For any £,77 G Cc(X,E) let (£,77) Cc(X x be given by

(£;t?)(x,p) (£x9,ifes) ; then {£,£) is a positive element of A C0(X) x7F,
since for any 77 f2(F) and x G X one has :

(rç> **((£> £»rç)

EE (^xg-'h,^xg-ih)r)(h
1

g)r](g)j{h,h
1

g) (a,a) >0,

where a £(&<,-! )p 77(5) e Ex.

Let £ be the completion of Cc(X,E) with the norm ||£|| §=? ||(£,0|| ; then

£ is a C*-module over A, with:

(£/) to E/^-\s)aV)S for every / G Cc(X xi), £ G C0(X,£)

(One easily checks that (0 7/) (0 77) * / and that this right action of
Cc(X x T) extends to an action of A.)

The equality (77(77, 0)(x) {(jjxg-^9, îx)(rjxg-ù 9 shows that any

endomorphism cr of the vector bundle £ which commutes with T and has

T-compact support defines an A-compact endomorphism of £ by the equality :

(70 (x) a(x)£(x) for every x E X. Thus, to any triple (E0,Ei,a) E V^7)(X)
corresponds an element of KK(CyA), A Cq(X) x7 T, which obviously
depends only upon the class of the triple in £^r7)(X). Let us prove that this

map is an isomorphism assuming that T is torsion free. We may then assume
that X is r-compact. We claim first that A Cq(X) x7T is Morita equivalent
to a C*-algebra with unit. Indeed, with V X/T, A is the C*-algebra of
the continuous field of elementary C*-algebras At Co(7r~l(t)) x7 T, where
7r: X —» X/T — V is the projection. By a simple computation, one gets that
the Dixmier-Douady obstruction 6(A) E H3(V: Z) is given by 6(A) <z>*(£7)

where f: V —> BT is the classifying map, and dj E H3(BT, Z) is the boundary
of 7 E H2(BT, Sl) H^T.S1) in the exact sequence:

H\T,z)-»h2(T,R)- h\r,s1)A r,Z) -H\T,
In particular 6(A) is a torsion element in H3(V, Z) so that there exists a
bundle of matrix algebras over V with the same Dixmier-Douady obstruction
and A is Morita equivalent to a unital C*-algebra. It follows then that K0(A)
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is obtained from C*-modules E over A with the property id^ G Endi.e.
all endomorphisms of E are A-compact. Finally, the above construction sets

up a surjective map from (T, 7)-vector bundles on X to C*-modules over A
with the above property. Given E, the fiber Ex of the corresponding vector
bundle is:

Ex S%AeÇT)

where A — Cq(X) x7 T acts in £Z(Y) by the representation ttx. Since

7tx(A) C Compacts, one gets that Ex is a finite dimensional Hilbert space.

b) The proof is the same as in [19], one defines for any T-equivariant
C*-module E over B the crossed product E xi7r twisted by the 2-cocycle 7.

We can now state:

THEOREM 2. For any element x of K^r^(T*Z) Kq(A) (where
A — Co(T*Z) x7 r, and Z a proper Y -manifold), one has :

p(x) x Oy(r,7) (D),

where D G KKr(Co(F*Z), C) is the class of the Dirac operator.

Note that x G KK{C, Co(T*Z) xi7 F) and that

7(r kk(c0(t*z))r,c;(r,7)),

so that the above equality is meaningful. The proof is straightforward.

To show how to use this theorem, we shall combine it with the recent result

of G. G. Kasparov ([19]) to compute K/(C*(r, 7)) in the following example : we
let r ttj (M) be the fundamental group of a Riemann surface M with genus

> 1. From the exact sequence 0 H2(r,Z) —> H2(Y, R) —> H2(T, Sl) 0

one gets H2(Y,Sl) R/Z, so that there are many non trivial cocycles in
this example. The geometric group Kly(pt, Y) is easily determined : since the

universal cover M of M (the Poincaré disc) is a final object in the category
of proper T-manifolds, and homotopy classes of T-maps, it is enough to

compute K1qs^(T*M). Since M has a F-invariant Spinc-structure, the Thorn

isomorphism hence gives: ^(pfiF) Kl{Vl){M). By Proposition 1, one has

K|r 7)(M) Ki(Co(M) xi7 T) and the latter C*-algebra is Morita equivalent to

C(M) (see the proof of a) in Proposition 1). Thus we get: K^(pt,Y) Z2,

k\{Pt,r) z2®.
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THEOREM 3. Let r be the fundamental group of a Riemann surface of
genus > 1, and y E H2(T, S1), then the map p: K*(pt,T) —> K*(C*(r,j)) is

an isomorphism.

Proof Let D E KKG(C0(U), C) be the G PSL(2,R) equivariant Dirac

operator on the Poincaré disc U — GjGc (cf. [19]). Identify M with U and

T with a subgroup of G. Then by Proposition lb) and Theorem 2 it is

enough to show that the restriction of D to an element of KKt(Cq{U),C)
is an invertible element. This follows from [19] which shows that D is an

invertible element of KKg(Cq(U), C), and from the multiplicative property of
the restriction to subgroups.

We shall now show how to prove that the C*-algebras C*(T, 7) are pairwise
non-isomorphic when 7 varies in H2(T,Sl). In fact we shall compute in full
generality the composition (op of the canonical trace on C*QT, 7) (viewed
as a map from Ko to C) with the above map p: i^(pt, F) —> ATo(C*(r,7)).

The computation is a generalization of the index theorem for covering
spaces of Atiyah ([3]).

LEMMA 4. Let Z be a proper T -manifold and E a ÇT, 7) vector bundle
on Z. There exists a T -invariant connection V on E.

Proof For any (r, 7)-vector bundle F on Z and section £ C£°(Z,F)
let, for g T,gÇgC~(Z,F) be given by: (g£) (x) (^(xg))g^i e Fx for
every x E Z.

In this way one gets a natural 7-action of T on both C^°(Z,F) and

C^°(Z,F 0 T*Z), and one looks for a connection

V : CnZ, E) -> Cc°°(Z, E 0 T*Z)

such that V(pO - p(V0 for every 0 Let / E C°°(Z), 0 < / < 1,
be such that ^2f(xg) 1 for every x E Z and V0 be a connection

r
on E. Put V J29~X(fVo)g. By construction V is T-invariant, moreover

r
each cr'Vop is a connection on E thus V is a connection on E.

Proof of Theorem 3, continued. Assuming now that Z is F-compact, let
for a r-invariant connection V on E,bethe canonical differential form
on Z which represents locally the Chern character ch(£). By construction
wy is T-invariant and hence determines a cohomology class in Z/T. One
checks as usual that this class does not depend upon the choice of V and
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we shall denote it by [E] G H*(Z/F, R). This construction easily extends to

give a map ch from K^Vl)(Z) to H*(Z/F, R) for any proper F-manifold Z.
However, in the presence of the 2-cocycle 7 the range of this map is no

longer necessarily contained in H*(Z/F, Q).
To be more precise, let us make a few simplifying assumptions and compute

exactly the range of this Chern character :

Thus let us assume that T is torsion free and that the image of 7 G H2(F, S1)

in H3(F, Z) under the connecting map of the long exact sequence:

is equal to 0 (it is always a torsion element).

Let then p e H2(F, R) be such that e(p) 7 where e: R —» Sl is given
by e(s) — exp(27vis), for each s eR.

LEMMA 5. a) Let p G Z2(r, R) and Z be a proper F -manifold, then

there exists a smooth function c G C°°(Z >0 F) such that :

c(x, g{) + c(xgi, g2) c(x, gig2) - p(gi, g2)

for every x G Z, g\,g2 G T.

b) If 7 £(p) exzsfa an isomorphism r : K^(Z) —> K^r ^(Z) making
the following diagram commutative :

where m is multiplication by the cohomology class exp(<fi*p) and where

f : Z/r —>• BF is the classifying map.

Proof a) Let M Z/r, 7r: Z M the projection. Since Z is a locally
trivial T-principal bundle, it is easy to construct c on the open set

for U small enough. Then one combines such cjj by a smooth partition of
unity on M :

c(x, 9)=F2 4>u(irg).

b) Let c G C°°(Z x T) be as in a) and let us endow the trivial line bundle

on Z (with total space Z x C) with a structure of (r,7)-bundle. We take:

ch: 7r,7)(Z) — H*(Z/r,K).

H\r, z) -> h\t, r) h2(t, s1) ^ h2(t, z)

x?(Z)

H*(Z/T) ->H*{Z/T)
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(x, A)g (xg, e(c(x, p))A).

(One has ((x, X)g\)g2 (xg\g2> e(c(x,g{) + c(xgi,g2))X) 7 1{9u9t){x\)
(.9I92)•)

Let L be the (r, 7)-line bundle on Z thus obtained. It is obvious that

tensoring by L gives an isomorphism of V^r)(Z) with 7)Z and hence of
K°t{Z) with ^r,7)(Z).

£>z<i 0/ proof of Theorem 3. To conclude, it is enough to compute

ch(L). Let £ G C°°(Z,L) be the section £(x) 1 for every x G Z. Let

V be a T-invariant connection on L, one has ch(L) exp(u;) where

to G H2(Z/T,R) corresponds to the T-invariant 2-form 0 2^d(V£/0 on
Z. Let a 2^ V^/^, then a is a 1-form on Z, and let us compute for any

g G r the difference a — fa where fx) xg for every x G Z. Since V is

T-invariant, one has fa — Vg(0/9(0* and as g(0(x) e(c(xg, g~1)) £(x)

one gets fa — a — dipg, where ipg(x) c(xg,g~l) for every x G Z. One

has f>gigi — gi'fgi — f>9l p(g2lThis shows that the class of 6 in
H2(Z/T, R) is the pull back of the class of —p in H2(BT, R), by the classifying

map: Z/T -+BT.

Using this map ch: K*T j)(Z) —> H*(Z/Y, R) we get, by the same five
steps as in §6, a map

Again as in §6, let e be the map from #r to a point, and trr be the canonical
trace on C*(r,7).

THEOREM 6. For any discrete group T and 2-cocycle 7 the following
diagram is commutative :

£;(pt,r)-^z/*(Br,R).

^(pt,r) —k0(C;(T,7))

H,(BT,R) c

The proof is a simple adaptation of the heat equation method to compute
the T-index of the (T,7)-Dirac operator on a T-manifold Z.
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COROLLARY 7. If 7 e(p), for some p G H2(F, R), then the subgroup

of R, A trr(Xo(C*(r, 7))) contains the group :

ch K* (BT), exp(p)

This follows from Theorem 6 and Lemma 5 b).

Moreover, when the map p is an isomorphism, one can conclude that

À (ch^*(#r),exp(p)). Thus using Theorem 3 we get:

COROLLARY 8. Let r be the fundamental group of a compact Riemann

surface of positive genus, 7 G H2(r, S1) a 2-cocycle and 0 G R/Z
c/ass 0/ 7 in H2{T,R)/H2(T,Z) R/Z. TTzen image a/ &o(Cp(r, 7)) by
the canonical trace Trp is equal to the subgroup Z + ^ZcR.

Since, for g > 1, the trace trr is the unique normalized trace on

C*(T,7) (for any value of 7), one gets that the corresponding C*-algebras
are isomorphic only when the F 's are the same (using K\ and when the 7's
are equal or opposite (in H2(F, S1)).

9. Foliations

Let V be a C°°-manifold, and let F be a C°°-foliation of V. Thus F is

a C°°-integrable sub-vector bundle of TV. As in [33] let G be the holonomy

groupoid (graph) of (V,F). The manifold V is assumed to be Hausdorff
and second countable. G, however, is a C°°-manifold which might not be

Hausdorff. A point in G is an equivalence class of C°°-paths

7: [0,1]-V
such that 7(/) remains within one leaf of the foliation for all t G [0,1]. Set

5(7) 7(0), r(7) 7(1). The equivalence relation on the 7 preserves 5(7)
s

and r(7) so G comes equipped with two maps G =4 V.
r

Let Z be a possibly non-Hausdorff C°°-manifold. Assume given a C°°-map

p: Z ^ V, set

Z O G{(z,7)Z x G I 5(7)} •

A C°° right action of G on Z is a C°°-map
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