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258 G.J. FOX

where the power series converges in the domain D, and

l-i, 1

1
•

Since Lp(s, r; x) is defined for each t e Cp such that | r) < 1, we now
have a p-adic function of two variables, Lp(s7t;x)i where s £ D, s ^ 1 if
X 1, and t £ Cp with \t\p < 1.

4. Properties of t; x)

Most of the properties that follow are direct consequences of similar

properties that hold for the generalized Bernoulli polynomials. In all of the

following we will take p prime and x a Dirichlet character with conductor fx.

4.1 A SYMMETRY PROPERTY IN t

The first property we obtain regarding Lp(sft\x) is a direct consequence
of the generalized Bernoulli polynomials being either odd or even functions,

except when x 1- Recall that Lp(s,t;x) interpolates the values

(18) Lp(l-n,t,x)~~-bn(t),
n

for n G Z, n> 1, and t G Cp, |*| < 1, where

(19) bn(t)B„tXn(qf)-Xn(p)pn~lBn}Xii (p~lqt)

and we define

(20) Cn(t)Y,0m=0 ^ '

LEMMA 4.1. For all n £ Z, n> 0, we have

BnA-t) (-iy%,i(0 -
Proof. This holds for n 0 since 2?o,i(0 — 1

• Now assume that n > 1.

Because Z?n i 0 for odd n > 3, we can write (2) in the form

m=0
n—m even

^/I,l(0 — f J FnBi^Pn— 1
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Any m such that n — m is even must have the same parity as n. Thus

Bn,l(-0(-D" Y;ft18"-"1'11"1
jn,m=0

n—m even

n— 1

From the value Fi,i —B\ 1/2, the lemma then follows.

LEMMA 4.2. For all n G Z, n > 0,

- X(- Vbn(f).

Proof. This is obviously true for n 0 since

and Fo,x 0 except when x 1, in which case Bop 1. So we can assume

that n > 1.

First consider the case of Xn 1
• This implies that x By Lemma 4.1,

bn(-t) Bn^(—qt)-pn~lBnA(- p~)(-irBnA(qt)-(-l)nn(qtr^

- pn~l {{-l)nBn^ (p~lqt) -(-1
(-1)" {Bn,i(qt)-pn~lBHti
(-!)"WO •

Since x~^n and ^(—1) — 1, the lemma holds for x«
Now suppose that Xn 1

• Then, from (3),

W~0 - Xn(p)Pn~1B„,Xll (~p~lqt)

((BntXu(qt)-Xn(p)pn~1B,ltXii (p~lqt))
(-l)"Xn(-l)W0-

Note that x« X^-", which implies that \„( 1) • 1 )"y( I Thus the
lemma also holds for x« 7^ 1

•

Since the lemma holds for both x* 1 and \n + 1, the proof must be
complete.

Using this result, we can prove
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THEOREM 4.3. Let te Cp, \t\ < 1, and s G D, except s ^ 1 if x~ 1-

Then

Lp(s, -r; x) *; x) •

Proof From Lemma 4.2 we see that

£«(-0 x(-DW).
Also, (20) implies that

cw(-0 » x(-1)^(0-
From (16), whenever n > — 1,

«n(-0 X(-lKWî
which implies that

LpC*, -f; x) X(~ l)£PCs, *; x) • Q

If x(— 1) — 1 and r= 0, then

Lp(s,0;x) -Lp(s, 0;x),

which implies that

£pfox) ~Lp(s;x),

and thus Lp(s\x) — 0 for all s £Q, as we would expect.

4.2 Lp(s,t;x) as A power series in r- a, a G Cp, \a\ < 1

To develop Lp{s, t\ x) in terms of a power series in £ will enable us to
find a derivative of this function with respect to this second variable. All this

we shall do, but before doing so we need to specify some notation.

LEMMA 4.4. Let t G Cp, |t\p < 1. Then for n E Z, n > 1,

lim ^JLpCj + w^jx) -- (1 - x(p)P_1)^o,x
\ n J n v 7

Proof Recall that, from Theorem 3.13, we can write

/ oo

f; x) ~yry + 53 ~ 1)m'

m=0

where a_i(0 (1 — x(p)P~l)Bo,x- Thus



A p-ADIC L-FUNCTION OF TWO VARIABLES 261

lim(i - 1)LP(5, f, x) (l - X(P)P ') Bo,x •

Now let nZ, n>1, and consider

lim ()LJs + n,t,x) 1im[n
s->\-n \ n J s->i \ n J

If n — 1, then we write this as

lim(l - s)Lp(s, t\ x) ~ (1 - X(P)P~1) Bo,x •

s—> 1

If n>2,then
1

"~2 1

— lim TT (n-5-/)-,ni î-»i xx n
i=0

which implies that

lim )L„(j + n,f,x) ~7 f limTT(n - s -ï))(lim(l -s^i-n \ n ni \s^îfA / \s~+\
i=0

-- (1 - X(l)Bo
n v

^ — x

Therefore the lemma holds for all n > 1.

Now, because Lp(s,t; 1) is undefined when s 1, the quantity

^jLp(s + n,t\ 1)

is undefined when s \ — n, for n e Z, n > 1. However, Lemma 4.4 shows

that this quantity exists as s —» 1 — n. In the following we will encounter

expressions that involve (~~ns)Lp(s + n, t; x), and because of Lemma 4.4 we
shall assume the understanding that

1—s

n
Lp(s + n, t\ x) --(l~X(p)P l)Bihx

s=l-n n

for n G Z, n > I.

Theorem 4.5. Let t e Cp, \t\ < 1, and s e ®, except s ^ 1 if x— 1-

Then

00 /— \
(21) Lp(s, r, x)Y,(Jj (s + ; Xm)

m—0 ^ ^

Proof. Let f G Cp, |r|/; < 1, and let k E Z, k > 1. Then
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fk 1 \ 1

m
)<FtmLp(l-k + m">Xm) -j.dctk(î--Xk(p)P~l)Bo,x

m=0 ^ '

+ E ~0- (* - «);x)•
m=0 ^ '

By evaluating the L-function, we obtain

C
w

1)Z,p(-1 ~~ ik~m)\Xm)-| Q j (l -
and thus

oo /1 -j \
J2( ~

J1mtmLp(l — (k — m)\Xm)
m=0 ^ m '

-\E {%(!"
m=0 ^ '

which implies that the sum converges for s 1 — k. Breaking this into two
sums

OO /1 1 \
E \qmrLp(\-{k-m)-Xm)
m=0 ^ '

-\è è C v"
m=0 ^ ' m=0 ^ ^

BKxk{qt)- Xk(p)pk~lBkM(p-V))

Lp(1 — k, t;x)Thus (21) holds for a sequence {1 — k}^ that has 0 as a limit point.
Lemma 2.5 then implies that Theorem 4.5 holds for all s in any neighborhood
about 0 common to the domains of the functions on either side of (21).

Now we will show that the domains, in s, of each of the functions on
either side of (21) contain D, except s ^ 1 when % 1.

This is obvious for the function Lp(s> t\ x) • Consider the function

OO / \ OO OO / \

^(m,)</V%(,+^Xm. E E
m=0 m=0 n=—l

We have seen that this sum converges for s — 1 — k9 where k e Z, k > 1.

Now we need to show that it converges for s £, where (gD, £ ^ 1 if
X 1, and £ 1 — k for k G Z, k > 1. So let £ satisfy these restrictions,
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and let e > 0. Note that |£ — 1 \p <r,wherer l\q\p
1

- Let r$ G R,
0 < r0 < r,such that |£ - 11 r0. Then for any Z, m > 0,

]£ + m- 1| p<max||m|p, |£ — l|p|
< max {1, r0}

implying that + + / 1. Let 6 G R such that r6 max{ 1, r0}.
Then 0 < 6 < 1, and

(22) |£ + m-l| p<r6.
Let N\ e Z such that

Then for any me Z, m > 1, such that m>N\, we must also have

< e.-

For me Z, m > 1, consider

+ m - 1)- <K~'kim

Note that, by (22),

(£ + m - 1)
1 lÉ+m-ll/ïï

(£ + m — 1)

1-e-V- 1)L

-1

/=1

Therefore

qmfa-ltXm(£i + m - 1)

and from the bound

m !L>|p|?-1)/(p~I).

we obtain

+ m — 1)_1 < \p-lq\p\p\;{X~6)(m~mp-l\q\(y6){m-l.

Thus if m>N\, then

qmtma-i^Xm{£j + m — 1)~ < 6.
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Now let N2 G Z such that

\fxP\,

Then we must also have

< e.

for any m,n e Z such that m > 0, n > 0, and max{m, n} > N2. Let us

consider

^an,Xm^ + m- !)" f-c\<
\mjp

KKxJJe + m-ir
where m,n e Z, m>0,n > 0. For all 0,

< Hirv»,
and by utilizing this along with (17) and (22), our expression becomes

-e
m

</VXXra(£ + m- 1)" <\m\(n+\)\r{\fxp\-\6^\q m-\-n

Since

\m\{n+\)\\ >\pt+n)/(p-l\
we obtain

m
qmfnantXm{i + m-l)n

Thus if max{m, n} > N2, then

^r^,Xw(e+m-ir < e.

Let N max{Ni,N2}, and let m,n G Z, m > 0, n > — 1. Then for
max{m,n} > iV, it must be true that

-0 qmflan^Xm{£)^m- 1f < 6.

Thus, by Proposition 2.4, the sum
OO OO / j.\

EE " +»-i)"
m=0n=:-l ^ '

must converge. This implies that the function on the right of (21) must converge
for all s ED, except s ^ 1 if x — 1

»
and the theorem must then hold.

Since we can now express Lp(s) t; x) in terms of a power series in t, we
can take a derivative of this function with respect to t.
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Lemma 4.6. Lett e Cp, \t\p < 1, except s f 1 1-

Then
dn (—isA
—Lp(s, /; x)

m

for n G Z, > 0.

Proof. If n — 0, then the lemma is obviously true. So consider n — 1.

Applying Proposition 2.6 to (21),

<9
00 7 iS"\

—Lp(s, t; x)X f Jjqmrn(s + m;
m— 1 ^ ^

Now,

\m / \m — \ J
so that

o 00 / -j \
—LP(J, t;x)X^ J_ 1

o + Xm)

/n=l ^ '
°° /— — 1 \X m

(5 + 1 +
m=0 ^ 2

-qsLp(s+ l,/;xi) •

Now suppose that

cf1 f—s\
q^lp(s, t;x) n\q"{

for some n £Z, « > 1. Then

Q1+i a /a« \" oi\dr
n[q"{n)jtLp{s + n^Xn)-

From the case for n 1, we see that

(7) Iip (*+ X"} (7)(~* "n)qLp

(n +\)\qn+l ^ ^ ^jLp l,*;x„+i)
Therefore

/ \
g^Lpis,t-x) — (« + 1)!9"+1 („ + !(5 + « + 1, r;X11+1)

and the lemma must hold by induction.
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With this result, we can derive a more general power series expansion of
Lp(s,t\ x)'

THEOREM 4.7. Let te CL, Iii < 1, and se D, except s 7^ 1 if x — 1
•

TTzerc/or aeCp) la^ < 1,

00 /— \
x) L m)qm^~~ a'>mLp ^ + m'a''Xm) '

m=0 ^ '

Remark. Note that Theorem 4.5 is the case of a 0 here.

Proof It follows from the Taylor series expansion of Lp(s,t;x) in the

variable t about a (see Proposition 2.6) that we can write Lp(s,t;x) in the

form
oo

Lp(s, t\X) X^j ßntt - a)m'
m=0

where

m! dtn
6>n '...7 \ '

From Lemma 4.6

and so

1 <9m

âï^5'r; x)
m

J ^ '

ßm — )q o; Xm) 7x m '

completing the proof.

4.3 Relating Lp(s, t; x) to some finite sums

From (4) it becomes obvious that the generalized Bernoulli polynomials
have a considerable significance in regard to sums of consecutive nonnegative

integers, each raised to the same power, itself a nonnegative integer. The

following illustrates how this can be extended with the use of Lp(s, t\ x).
For the character x» let Fo lcm(/%, q). Then fXn | F0 for each ne Z.

Also, let F be a positive multiple of pq~lpQ.
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Theorem 4.8. Let t g Cp, \t\ < 1, and s g 0, j ^ 1 if x 1-

Then

qF

(23) Lp(5, t +F; x) - LP(s,f, x) ~
Cl= 1

Proof Let t G Cp, |/|/; < 1, and let n G Z, n > 1. Then from (18),

Lp( 1 - n, r + F; x) - Fp(l - n, r, %) + F) - ô„(f»
n

Now, (19) implies

i„(r + F) - + F) - Xn(p)p"-]B,hx„ + F)))

- (B,hXn(qt)- X(p~xqt))
C Bn,x„(q(t+ O) - Bn,Xif(.qt))

-Xn(p)p"~l{B„tXnip~lq{t + F)) (f~V)) •

Thus, by (4), we can write

bn(t + F)-bn(t)
qF p~]qF

nY^Xn(a)(a +qt)'1-1 - nxn(p)p"~l L Xn(a)(a + p~lqt)"~l
a— 1 fl==l

qF qF

« L X»(a)(a + "«y Xn(a)(a +
a— 1

/?[a

Therefore,

qF

Lp(l - n,t + F\x) ~ Lp(l -n,t;x) ~ ^ Xn(a)(a + qtf~l
a=\

(a,P)= 1

Now, Xn SO that

Xn(a)(a+ qt)"~l Xi (a)oj^+ qt)n~x

Xi (a){a+ qt)'l~l

Thus

qF

Lp(\ — n,t+ F;x) — Lp{\— n, i; x) — ^ Xi(a)(a +
fl=l

(a ,/?)=!
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and (23) holds for all s 1 — n, where ne Z, n > 1. Therefore, since the

negative integers have 0 as a limit point, Lemma 2.5 implies that Theorem 4.8

holds for all s in any neighborhood about 0 common to the domains of the

functions on either side of (23).

It is obvious that the domains, in the variable s, of the functions on the

left of (23) contain D, except s ^ 1 when x 1
• Consider now the function

qF qF

- ^2 Xi (a)(a + qt)~s -
a—1 a—I

(a,p)= 1 (a,p)=Û

Since it consists of a finite sum of functions of the form (a + qt)1 where

a e Z, (a,p) — 1, we need only show that each such function is analytic on

D, and the proof will be complete.
The quantity (a + qt)1 can be written as

{a + qt)l~s exp ((1 - s)log(a + qt))

and by (9), the Taylor series expansion of the exponential function,
°o

{a + qty~s —(1 - s)m (log + qt))m
m=0

Since {a + qt) 1 (mod qo) for a e Z, (a,p) 1, and t e Cpf \t\ < 1,

we must also have log (a + qt) 0 (mod ^o) for such a and t. Thus

— (1 -s)m (log(a + qt))n < —:qm(s ~ ifml

for all m. By (8) we can write
1

-7qm(s - 1rml
< p-m/(p-l)qm(s-l)n

p-VtP-»q(s~l)
m

Thus if

then

- 1) < 1,

:(1 - s)m (log{a + qt))"

as in —> oo. So whenever |s— IL < |p| meaning that

we have convergence for the power series. Therefore, the functions on either

side of (23) have domains that contain D, except possibly for s 1 when

X 1, and the theorem must hold.
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Corollary 4.9. Let s eD, except 1 1-

qF

Lp(s,F-,x) Lp(s-,x)- ^2 xM{a)
a= 1

(<3,p)=l

Proof. This follows from Theorem 4.8 since Lp(s, 0; x) — X) f°r

any character x- D

We shall now consider how Corollary 4.9 can be utilized to derive a

collection of congruences related to the generalized Bernoulli polynomials.
Let Àc denote the forward difference operator, Acxn xn+c — xn. Repeated

application of this operator can be expressed in the form

This is the polynomial structure that we utilized with respect to generalizing
the p-adic L-functions. We will incorporate this structure in an extension

of the Kummer congruences, but the results that we derive will be without
restriction on either x or p.

THEOREM 4.10. Let n, c, and k be positive integers, and let r G Zp
such that Ir\p < \pq~lFo\p. Then the quantity q~kA^ßn^x(r) — q~kAkcßfhX(0) E

ZP[X]> and, modulo qZp[xl, is independent of n.

Proof Since Ac is a linear operator, Corollary 4.9 implies that

m=0

Recall that Fq — lcm(fXiq). For n E Z, n > 1, denote

4,x(0 --~ Xn(p)pn lB„)Xn (p

qF

AkcLp(l-n,F-,x) AkcLp(l-n-,x)- J2 Xi(a)Akc(a)n~\
a— 1

(a,p)= 1

where F is a positive multiple of pq 1Fq. Thus

qF

Acßn,x(F) ~ y.ßn,x(0) - (a)(a) lAk(a)n.
a—I

(a,p)= 1
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Note that

(24) A kc(a)n]T (kX-l)k-m{a)n+mc(a)n «- l)*
m=0

Now, (a) 1 (mod qZp), which implies that (a)c 1 (mod qZp), and thus

Ak{a)n 0 (mod £%).

Therefore

A*/?„iX(F) - A*&,x(0) 0 (mod P[X]),

and so q~kAkßnjX(F)—q~kAkßna(0) G Also, since (ß)n 1 (mod #Zp),

(25) q~kA%iX(F)- q~kA%,x(0)(—
«=i \ q J

(a,p)= 1

implies that the value of q~kAkßn^x{F) — q~kAkßna(0) modulo qZp[x\ is

independent of n.

Let r G pq~lFoZp. Since the set of positive integers in pq~lFoZ is dense

in pq~xF()Zp, there exists a sequence in pq~lF$Z, with n > 0 for
each z, such that 77 —> r. Now, Ai,x(0 is a polynomial, which implies that

ßn,x(Ti) ßn,x(r). Therefore

lim (Afj„.x(r;) - A*/?B x(0)) A^„,x(r) - A*/3„,x(0).
I—»OO

The left side of this equality is 0 modulo qkZp[xi, which implies that

A%tX(r)- A%,x(0) 0 (mod $%[*]),

and so q~kAkßn:X(r) - q~kAkßnjX(0) G Z/;[%]. Furthermore, for n' a positive

integer,

.lim {{q-*£ßn,x{Ti) - q~kA%,x(0))-;) -
((q~kA%,x(T) - q~kA%>x(0))- 0)))

Since 77 G pq~lF0Z for each z, the quantity on the left must also be 0 modulo

qZp[x\- Therefore the value of q~kAkßna(r) - q~kAkß,hX(0) modulo qZp[xi
is independent of n.
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Theorem 4.11. Let n, c, k, and k! be positive integers with k k!

(mod p — 1), and let r G Zp such that \r\p < |pq~lFo\ Then

q-k Akcßn,x(r)- q~kAkßn,x(0)

q~k'Ak'ß„a(r)-q~k'Ak'ßntX(0) (mod pZp[x])

Proof. Let k and k! be positive integers such that k k! (mod p — 1).
Without loss of generality, we can assume that k>k'. From (25),

(q~-kAkßn,x(F)- q-kAkßn,x(0))- (q'k'Ak-
- £ Xl(a){a)-'[^pp £ 'pf

(a,p)= 1 (a,p)= 1

(a,p)=l

where F is a positive multiple of pq~lF0. If a is such that

(a)c - 1 =é 0 (mod pqZp),

then

J -1=0 (mod

since k- k'0 (mod p - 1 Thus

q~kAkcßna(F)- q~kAkßntX(0)

q-k'Ak'ßn>x(F)- (mod pZpM) •

Now let r 6 pq~lF0Zp.Then there exists a sequence in
with T[ > 0 for each i, such that 77 —» r. Consider

.lim (ßq-kAkcßn,x(jß-q~kAkßnam - -
— (<7 AAi,x(t) — AA,x(0)) - * A* ßn,x(T) ~ 1~k A,x(0)) •

Since the left side of this equality must be 0 modulo pZp[x], the theorem
must hold.
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THEOREM 4.12. Let n, c, and k be positive integers, and let r G Zp
such that \r\p < \pq~lFo\ Then the quantity

-r;Aßn,x(r)~[H t C)ß

and, modulo qZp[xl, is independent of n.

Proof We are once again working with a linear operator, so Corollary 4.9

implies that

fC^jLpV~n,F\x)(f kKyp{\-n-x)
a= 1

(a,p)—l

where F is a positive multiple of pq lF0. Then

)ßn,x(F)~ (f ^jA,x(0)=i- j
a=l

(a,p)=\

Utilizing (15), we can write

' m=0

1
k=—y] $(&, l)m

' m=0

which follows from (24). This can then be rewritten as

^w W" ^l<(">'-1)

Since # 1((^)c — 1) C for each a G Z with (a,p) 1, we see that

This then implies that

'AcV«,x(0 - ^Ä,*(°) e Z,[X].

Furthermore, since (a)n 1 (mod #ZP), the value of this quantity modulo

^Zp[x] is independent of n.
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Now let T e pq-lF0Zp, and let be a sequence in pq~lF0Z, with

Tj > 0 for each i,suchthat r,- -» r. We are working with polynomials, so

that

,i(C?c)Ä"(T')-(^äl)A'(0))

which must be in Zp[\] since the limit of any sequence in Zp[xl must also

be in Zp[xl- Now let n' be a positive integer, and consider

hm (((«>) ßna(rö-r;A0Â„x(O))- («>)&',x(0)))

((f>)ÄWM?>)/Vx(0)) - ((">)&/,x(r)- (?>)Ä',x(0)))

The quantity on the left must be 0 modulo qZp[xi, which implies that the

value of

(??C)Ä«(T)_t?C)A^0)

modulo qLplx1 is independent of n.

4.4 Generalized Bernoulli power series

In [9] we find a definition of ordinary Bernoulli numbers of negative index,
where n e Z, n > 1, in the field Qp, given by

(26) lim k)_n
/c—5-CC

where the limit is taken in a p-adic sense. Note that 4>{pk) —> 0 in as

/: — oc. Since |#,M|p is bounded for all me Z, m > 0, we must have

Um (l

/i ~ ^ _ n) L I1 - (/) - «) ; w~")

/iTp {n H~ 1 j oj n

implying that the limit exists and can be described in familiar terms.
Recall that Bm 0 for any odd me Z, m > 3. Thus (26) implies that

B_n —- 0 for any odd ne Z, n > 1. Furthermore, we have the following:
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THEOREM 4.13. Let n G Z be even, n> 2. Then

B-"+ ~ gZp>
r prime

(r—\)\n

where each prime r is taken to be a rational prime.

REMARK. Since l/r £ Zp for any rational prime r ^ p, this implies that

B-n + l/p G Zp whenever (p — 1) | n, and B-n G Zp otherwise.

Proof. By the von Staudt-Clausen theorem, we know that

Bm + - G Z
r pnme
(r— \)\m

for any even m G Z, m >2.
Let n G Z be even, n > 2. For any integer k > 2, </>(;/) is even and

(p — I) I <fi(pk). Thus </>(//) — ?z is even, and (p — \) \ n if and only if
(p — 1) I (f(pk) — n). Therefore, if k is sufficiently large,

B<t>(pk)-n+ ~ eZP>
r prime

{r—l)\n

and the result follows from (26).

In a similar manner we define generalized Bernoulli numbers of negative
index, where n G Z, n > 1, in the field Cp according to

(27) B—flim B^pk^_n^x
K—>-oo

where the limrMs once again taken in a p-adic sense. For each m G Z, m > 0,
the quantity is bounded. Thus, since — X f°r characters %

and for all k G Z, k > 1, we can write

X« (1 ~~

lim - (</> (/) - n)Lp(l - (<j> - n) ;
k—>oo

nLp(n+ 1 ;x«),

so that the limit exists. Since B^p^-n f°r n,k £ Z, with rc > 1

and k sufficiently large, we obtain B-n \ —B-n for all such n.
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If k>2, then 4>(pk)is even. Thus n and <£(/>*) - n are of the same

parity. Recall that

f 1, if X is odd
A ItO, if x is even.

Then B= 0 whenever n ^ 6X (mod 2), provided 0(//) — n > 1.

Because of this, the relation (27) implies that #-n,x 0 whenever

n^ 6X (mod 2) for all n eZ, n > 1. Furthermore, we can obtain

Theorem 4.14. Let x such that x^ h let ne Z, n> 1. 77zm

fxB—n,x ^ Z^M-

Proo/. Recall that when x / h fx^m,x ^ for all m G Z, m > 0.

Thus

fx^-'hX

must be in the p-adic completion of Z[x] for any ne Z, n > 1. Since the

p-adic completion of Z[x] is Z^txL the theorem must hold.

We now define what we shall refer to as generalized Bernoulli power series

of negative index in Zp[x\- For ne Z, n > 1, and for te Cp, V\P< kip.
let

B—n,x(t) ^lim B^pk^_n^x(t).

Then

-lim -{4>{pk)-n)Lp(l - (cp(pk)
k—>oo

nLp(n + M;**)
Since Zp(n + l,fiXn) exists for each n e Z, « > 1, and t e Cp, \t\ < l,

we see that B_,hX(qt) must also exist for such t. Thus B^x{t) exists for
t e Cp, It\p < \q\p. Now, by Theorem 4.5, we can expand this quantity as a

power series, obtaining
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Since \B^n+m)a\p<max{|p|p £, \fx\p*}and

- n\+ 1

m J \ m

this sum converges for \qt\ < 1. Thus we have the relation' ]p

oo

(28) ß_„,x(0
m̂—0

converging for all t G Cp, < 1. Note that this is in the same form as

(2) for the generalized Bernoulli polynomials having positive index, which we
can rewrite as

°° / \
m=0 ^ '

since (^) =0 for m,n e Z, m > n> 0. By setting t 0 in (28), we see

that B-niX(0) - B-nx for all ne Z, n > 1.

THEOREM 4.15. n eZ, n > 1. Then for any me Z, m > 1, such

that q I mfx,

mfx

B-n,X (mfx) ~ B-n,X(0)-/! y •

a=l
(a ,/?)=!

Proof By definition, since |m/x

^~niX (/hfx) (^x) ^4>(pk)—

m/x

lim (0(/)
a=l

/K

following from (4). Now, vp((j)(pk)) k — 1, and a^pk) 1 (mod /?*) for
(a,/?) 1. These imply that

mfx mfx

lim (^ (/)-«) V XW«-""1,
k-^-oo AZ—a=l a=l

(a ,/>)=!

completing the proof.
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THEOREM 4.16. Let n ez, n > 1. Then for all x and for all t G Cp,

1>

Proof Since
oo

wo 53
m=0

and B-n-m^x — 0 whenever n + mfk 6X (mod 2) for each m G Z, m > 1, we

see that B-thX{t) is either an odd or an even function according to whether

n + 6X is odd or even, respectively. Thus

B.n,x(-t) (-1 r+sxB-n,x(t)

(-l)BX(-l)B_„,x(0,

and the proof is complete.
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