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3. The p-ADic L-function Lp(s,t;x)

In the following, we apply Theorem 2.7 to the sequence {bn(r)}^Z0,
where bn(r) BniXn(qr) - Xn(p)pn~lBn,Xn (p~l4r)> for r G Q/>> \T\P -
to show that there exists a power series Ax(s,r) G ^r[ML Kr QP(X>r)>

which converges on {s G Cp : \s\p < \p\p^p l)\q\p1}- From this we can

prove the existence of a p-adic function, Lp(s,t;x)> that interpolates the

values Lp{ 1 — r;x) —^bn(r) for « G Z, n > 1, and converges in

{j Cp : |j- l|p < except s # 1 if x 1- After this we

will show that there exists Lp(s, r; x) f°r ea°h t G cP, Mp < 1, satisfying

Lp( 1 -n,r;x) --^(r),^ n

and converging in the domain above.

3.1 Lp(S,t\X) FOR t G Qp, \r\p < 1

Let p be prime, and let x be a Dirichlet character with conductor fx. Let

tgQp, |r{ < 1, and let Kr Qp(Xir)* the field generated over Qp by
adjoining r and the values x(a)> a £ Z. Since r and each of the x(a) are

in Qp, we see that Kr is a finite extension of Qp in Qp. For each r G Qp,
|v|p < 1, we shall derive our L-function Lp(s,r\x) m a manner similar to
that given for the derivation of Lp(s\x) found in Chapter 3 of [13].

For r Qp, \r\p< 1, define the sequences {£„(t)}~0 and {c„(r)}~0
in Kr according to

bn(r)Bn,xMT)- Xn(p)pn~lBn<Xti

and

^) E(j(-rwr).
m=0

In order to derive our L-function Lp(s, r; x), we will prove a particular bound
on the magnitude of cn(r), but to do so, we shall need the following:

LEMMA 3.1. Let m,r G Z, with m > 0 ßrcd r > 1. Then

p'-\
Y^am 0 (mod

1

a=0

w/zer<? we take 0° 1 in the case of a — 0 and m — 0.
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Proof. This is obvious for m — 0, so assume that m > I. We shall

prove this result for the remaining values of m by induction on r.
Since any sum of elements of Z must also be in Z, the lemma is true

for r 5=0 1. Now assume that the lemma holds for some re Z, r > 1. By
rewriting the sum

p'+1—l p—l pr—l

I] am J21>2(U+Prv)m >

a=0 v—0 u=0

and reducing this modulo pr, we obtain

/+1-i P-1/-1
um (mod pr)

a—0 i>=0 u—0

P'-1

p ^ (mod /7r).
u=0

By our induction hypothesis we must then have

/+1-i
am 0 (mod pr),

a=0

and the lemma follows.

Lemma 3.2. Let r |r| < 1, and let n e Z, n > 0. For all he Z,
A>1,

-Â7" X! V«) ((a + qr) - 1)" =0 (mod lp"~1

a=i
(a,p)= 1

Proof This is obvious for n 0 since writing

j'fx1%

X Va) X Va) - X Vp«)
<2=1 fl=l <2=1

(û,p)=l

allows us to derive

- 1), if X 1

0, if x 1
•

X Va):
a=\

(a,p)= 1

So let us assume that « > 1.



A p-ADIC L-FUNCTION OF TWO VARIABLES 247

Let h 1. Then (a + qr) 1 (mod qo) for all a G Z such that (a,p) 1

implies that

((a + qr) - l)" 0 (mod qno),

and the lemma holds for this case.

Now assume that h > 1. We can rewrite our sum as follows :

qhfx Qh
1

— ^

Y xm{a+qr)-l)n Y X(u + vqfx)((u+vqfx + qT}~ If.
a= 1 v=0 u=l

(a,p)= 1

Since \r\p < 1, we can write

(m + + qr) (u + vqfx + qr) uj~1 (u + vqfx + qr)

— (u + qr)u~l (w + qr) + vqfxu~~l (u + qr)
(u + qr) + vqfxu~l(u).

Thus

q'fx

Y X(a) ({a + qr) - l)"
a= 1

(a,p)= 1

Ifx

L V«) Y 1

u=1 v=0
(",P)=1

By expanding, the inner sum on the right can be written

q"-X- 1

Y ((" +qr)-l+ vqfxu>~\u)Y
i>=0

è ft) + ^ _ 1 Y yk

k=0^ ' v=0

Since (u,p) 1, we obtain the equivalence

qk ((w + qr) - l)" *
0 (mod qno)

for each k, 0 < k < n. Furthermore, by Lemma 3.1

qh~l- 1

^ vk 0 (mod p~lqh~l)
i>=0
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for each such k. Therefore

qh~X~l

((m -f qr) — 1 + vqfxuj~l{u))n 0 (mod p~1qn+h~lo).
v=0

This implies that

fh
53 X(a)((a + qr) - 1)" 0 (mod
a= 1

(a,p)= 1

yielding the result.

We now derive our bound on the magnitude of cn(r).

PROPOSITION 3.3. For all r G Cp, |r\p < 1, and for n E Z, n > 0, we

have \c„(t)\p < \pqfx\~l\q\"p.

Proof This follows in a manner similar to that given for the proof of
the bound 1^(0)^ < \q2fx\pl\q\p found in [13] (Lemma 4 of Chapter 3).

However, in this case we use Lemma 2.3 and the properties of x and w to
derive

1
ffx

bn{r) lim — V x(û)(fl + r)"h^ooq»fx ^
(«,/?)= 1

for each n > 0, and thus

1 ^
c„(r) lim -77- 53 V«) ((a + ^T) _ C/i-^oo anF z—'

1 a=l
(a,/>)=l

for each such n. From Lemma 3.2 we obtain

C„(r) 0 (mod /~V~V-1o),

and thus the result.

For our immediate concern we only need this proposition to hold for all

r eQp such that \r\ < 1. However, later on we shall need it in the form in
which we have it.

We are now ready to begin the construction of our L-function.
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Theorem 3.4. For each r E Qp, with \ r\ < 1, there exists a

power series Ax(s,t) in £V[[X|] such that the power series converges on

{s G Cp : \s\p < \p\lpKp~l)\q\p1}, and for each n G Z, n > 0, Ax(n,r)
satisfies

Ax(n,r)BniXii(qr)-Xn(p~lqr)
Proof By Proposition 3.3, \cn(r)\p < C\q\np for all n > 0, where

C \pqfx\~1' Therefore we can apply Theorem 2.7 to the sequences

{L(t)}~g and {c„(r)}~0 in KT - QPandfor p \q\p <
yielding this result.

Let us denote D{s £Cp:|i - \ \p <\p\lJ{p~{)\q\~1}

THEOREM 3.5. For each r E Qp, with \t\ < 1, there exists a unique
p-adic, meromorphic function Lp(s, r; x) that can be expressed in the form

x oo

Lp(s,r; x) ff+ - 1)",
«=o

where the power series converges in the domain D, having coefficients
a»{r) £Qp(x, t), with

/ 1-1, ifa-\(r)p

I 0, ifx£ 1.

Furthermore, for each neZ,n>1,

Lp(1 - n,T\x) ~~{Bn,x„{qr)~p~lqr))

Proof Let

1

(13) Lp(s, r; x)—yAx(l- <?, r)
with the Ax(s,t) as in Theorem 3.4. Then from the properties of Ax(s, t),
the power series must converge in the given domain, and for Z, > 1,

Lp(1 - n,r; x)-^(n.r) -I (ß„,x„(?r) - (/T V)) •

Note that

a-i(T) — T) — Bo,x(qr) ~ X(p)p 1Bo,x{p l(lT)
(1 - X(P)P"1)B0,x,
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and thus

a_i(r) 1-^ if X 1

0, if X ^ 1

The uniqueness of Lp(s, r; x) follows from Lemma 2.5.

At this point we have not completed our goal of showing that the /?-adic
function Lp(s,r\x) exists for each r G Cp, \r\ < 1. In order to prove this,
we will need to study the coefficients, an(r), of the power series expansion
of Lp(s,t\x) f°r ea°h t G Qp, \r\p < 1. From the results of this we will
show that the function Lp(s,r;x) exists for each r G c P' h\P < 1, and for

any sequence {t/}°30 in Q^, with 1771 < 1, converging to r, the values

Lp( 1 — n, 77; x) converge to Lp(l — ft, r; x) for each ft G Z, ft > 1.

3.2 Lp(s,t-,x)forteCp, }r|p < 1

Our previous work has been for TGQ,, |r|p< 1. To extend this result
to all r G Cp, \r\p < 1, we need to find a way to express ftn(r) so that it
can be defined for these values of r.

For k G Z, k > 0, the Stirling numbers of the first kind, s(n,k), are

defined by the generating function

Since the power series expansion of log(l +0 lacks a constant term, we must
have s(ft, k) 0 whenever 0 < n < k. We also have s(ft, ft) 1 for all n > 0.

The s(n,k) are integers, where ft, k G Z, ft>0, k > 0, and they satisfy the

relation

For additional information on Stirling numbers of the first kind we refer the

reader to [6], pp. 214-217.

LEMMA 3.6. Let tGQ^ \r\p < 1. For n G Z, n > — 1,

(14)

(15)

ml
m=nJr 1

Proof. From Corollary 2.8 we can write
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