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3. The p-ADic L-function Lp(s,t;x)

In the following, we apply Theorem 2.7 to the sequence {bn(r)}^Z0,
where bn(r) BniXn(qr) - Xn(p)pn~lBn,Xn (p~l4r)> for r G Q/>> \T\P -
to show that there exists a power series Ax(s,r) G ^r[ML Kr QP(X>r)>

which converges on {s G Cp : \s\p < \p\p^p l)\q\p1}- From this we can

prove the existence of a p-adic function, Lp(s,t;x)> that interpolates the

values Lp{ 1 — r;x) —^bn(r) for « G Z, n > 1, and converges in

{j Cp : |j- l|p < except s # 1 if x 1- After this we

will show that there exists Lp(s, r; x) f°r ea°h t G cP, Mp < 1, satisfying

Lp( 1 -n,r;x) --^(r),^ n

and converging in the domain above.

3.1 Lp(S,t\X) FOR t G Qp, \r\p < 1

Let p be prime, and let x be a Dirichlet character with conductor fx. Let

tgQp, |r{ < 1, and let Kr Qp(Xir)* the field generated over Qp by
adjoining r and the values x(a)> a £ Z. Since r and each of the x(a) are

in Qp, we see that Kr is a finite extension of Qp in Qp. For each r G Qp,
|v|p < 1, we shall derive our L-function Lp(s,r\x) m a manner similar to
that given for the derivation of Lp(s\x) found in Chapter 3 of [13].

For r Qp, \r\p< 1, define the sequences {£„(t)}~0 and {c„(r)}~0
in Kr according to

bn(r)Bn,xMT)- Xn(p)pn~lBn<Xti

and

^) E(j(-rwr).
m=0

In order to derive our L-function Lp(s, r; x), we will prove a particular bound
on the magnitude of cn(r), but to do so, we shall need the following:

LEMMA 3.1. Let m,r G Z, with m > 0 ßrcd r > 1. Then

p'-\
Y^am 0 (mod

1

a=0

w/zer<? we take 0° 1 in the case of a — 0 and m — 0.
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Proof. This is obvious for m — 0, so assume that m > I. We shall

prove this result for the remaining values of m by induction on r.
Since any sum of elements of Z must also be in Z, the lemma is true

for r 5=0 1. Now assume that the lemma holds for some re Z, r > 1. By
rewriting the sum

p'+1—l p—l pr—l

I] am J21>2(U+Prv)m >

a=0 v—0 u=0

and reducing this modulo pr, we obtain

/+1-i P-1/-1
um (mod pr)

a—0 i>=0 u—0

P'-1

p ^ (mod /7r).
u=0

By our induction hypothesis we must then have

/+1-i
am 0 (mod pr),

a=0

and the lemma follows.

Lemma 3.2. Let r |r| < 1, and let n e Z, n > 0. For all he Z,
A>1,

-Â7" X! V«) ((a + qr) - 1)" =0 (mod lp"~1

a=i
(a,p)= 1

Proof This is obvious for n 0 since writing

j'fx1%

X Va) X Va) - X Vp«)
<2=1 fl=l <2=1

(û,p)=l

allows us to derive

- 1), if X 1

0, if x 1
•

X Va):
a=\

(a,p)= 1

So let us assume that « > 1.
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Let h 1. Then (a + qr) 1 (mod qo) for all a G Z such that (a,p) 1

implies that

((a + qr) - l)" 0 (mod qno),

and the lemma holds for this case.

Now assume that h > 1. We can rewrite our sum as follows :

qhfx Qh
1

— ^

Y xm{a+qr)-l)n Y X(u + vqfx)((u+vqfx + qT}~ If.
a= 1 v=0 u=l

(a,p)= 1

Since \r\p < 1, we can write

(m + + qr) (u + vqfx + qr) uj~1 (u + vqfx + qr)

— (u + qr)u~l (w + qr) + vqfxu~~l (u + qr)
(u + qr) + vqfxu~l(u).

Thus

q'fx

Y X(a) ({a + qr) - l)"
a= 1

(a,p)= 1

Ifx

L V«) Y 1

u=1 v=0
(",P)=1

By expanding, the inner sum on the right can be written

q"-X- 1

Y ((" +qr)-l+ vqfxu>~\u)Y
i>=0

è ft) + ^ _ 1 Y yk

k=0^ ' v=0

Since (u,p) 1, we obtain the equivalence

qk ((w + qr) - l)" *
0 (mod qno)

for each k, 0 < k < n. Furthermore, by Lemma 3.1

qh~l- 1

^ vk 0 (mod p~lqh~l)
i>=0
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for each such k. Therefore

qh~X~l

((m -f qr) — 1 + vqfxuj~l{u))n 0 (mod p~1qn+h~lo).
v=0

This implies that

fh
53 X(a)((a + qr) - 1)" 0 (mod
a= 1

(a,p)= 1

yielding the result.

We now derive our bound on the magnitude of cn(r).

PROPOSITION 3.3. For all r G Cp, |r\p < 1, and for n E Z, n > 0, we

have \c„(t)\p < \pqfx\~l\q\"p.

Proof This follows in a manner similar to that given for the proof of
the bound 1^(0)^ < \q2fx\pl\q\p found in [13] (Lemma 4 of Chapter 3).

However, in this case we use Lemma 2.3 and the properties of x and w to
derive

1
ffx

bn{r) lim — V x(û)(fl + r)"h^ooq»fx ^
(«,/?)= 1

for each n > 0, and thus

1 ^
c„(r) lim -77- 53 V«) ((a + ^T) _ C/i-^oo anF z—'

1 a=l
(a,/>)=l

for each such n. From Lemma 3.2 we obtain

C„(r) 0 (mod /~V~V-1o),

and thus the result.

For our immediate concern we only need this proposition to hold for all

r eQp such that \r\ < 1. However, later on we shall need it in the form in
which we have it.

We are now ready to begin the construction of our L-function.
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Theorem 3.4. For each r E Qp, with \ r\ < 1, there exists a

power series Ax(s,t) in £V[[X|] such that the power series converges on

{s G Cp : \s\p < \p\lpKp~l)\q\p1}, and for each n G Z, n > 0, Ax(n,r)
satisfies

Ax(n,r)BniXii(qr)-Xn(p~lqr)
Proof By Proposition 3.3, \cn(r)\p < C\q\np for all n > 0, where

C \pqfx\~1' Therefore we can apply Theorem 2.7 to the sequences

{L(t)}~g and {c„(r)}~0 in KT - QPandfor p \q\p <
yielding this result.

Let us denote D{s £Cp:|i - \ \p <\p\lJ{p~{)\q\~1}

THEOREM 3.5. For each r E Qp, with \t\ < 1, there exists a unique
p-adic, meromorphic function Lp(s, r; x) that can be expressed in the form

x oo

Lp(s,r; x) ff+ - 1)",
«=o

where the power series converges in the domain D, having coefficients
a»{r) £Qp(x, t), with

/ 1-1, ifa-\(r)p

I 0, ifx£ 1.

Furthermore, for each neZ,n>1,

Lp(1 - n,T\x) ~~{Bn,x„{qr)~p~lqr))

Proof Let

1

(13) Lp(s, r; x)—yAx(l- <?, r)
with the Ax(s,t) as in Theorem 3.4. Then from the properties of Ax(s, t),
the power series must converge in the given domain, and for Z, > 1,

Lp(1 - n,r; x)-^(n.r) -I (ß„,x„(?r) - (/T V)) •

Note that

a-i(T) — T) — Bo,x(qr) ~ X(p)p 1Bo,x{p l(lT)
(1 - X(P)P"1)B0,x,
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and thus

a_i(r) 1-^ if X 1

0, if X ^ 1

The uniqueness of Lp(s, r; x) follows from Lemma 2.5.

At this point we have not completed our goal of showing that the /?-adic
function Lp(s,r\x) exists for each r G Cp, \r\ < 1. In order to prove this,
we will need to study the coefficients, an(r), of the power series expansion
of Lp(s,t\x) f°r ea°h t G Qp, \r\p < 1. From the results of this we will
show that the function Lp(s,r;x) exists for each r G c P' h\P < 1, and for

any sequence {t/}°30 in Q^, with 1771 < 1, converging to r, the values

Lp( 1 — n, 77; x) converge to Lp(l — ft, r; x) for each ft G Z, ft > 1.

3.2 Lp(s,t-,x)forteCp, }r|p < 1

Our previous work has been for TGQ,, |r|p< 1. To extend this result
to all r G Cp, \r\p < 1, we need to find a way to express ftn(r) so that it
can be defined for these values of r.

For k G Z, k > 0, the Stirling numbers of the first kind, s(n,k), are

defined by the generating function

Since the power series expansion of log(l +0 lacks a constant term, we must
have s(ft, k) 0 whenever 0 < n < k. We also have s(ft, ft) 1 for all n > 0.

The s(n,k) are integers, where ft, k G Z, ft>0, k > 0, and they satisfy the

relation

For additional information on Stirling numbers of the first kind we refer the

reader to [6], pp. 214-217.

LEMMA 3.6. Let tGQ^ \r\p < 1. For n G Z, n > — 1,

(14)

(15)

ml
m=nJr 1

Proof. From Corollary 2.8 we can write
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m=0

where s G Cp such that \s\p < \p\p^p q\p
1

- Now, expanding the quantity

(s) according to (15) yields

AX(S, ~S(m> n)Cm(jV,
m=0 n=0

m*

where s(m,n) G Z is a Stirling number of the first kind. At this point we
wish to switch the order of summation in this expression, but before doing so

we must show that the terms in the summation converge to 0 at a sufficient
rate.

Let e > 0 and let £ G such that |£|p < \p\lJ^P~l)\q\pl • Then there

exists <5 G R, 0 < <5 < 1, such that

iei„=e- \p\y~V
Let A£M G Z, N > 0, M > 0, such that if n > N then \pqfx\~l6n < e,

and if m > M then \pqfx\~l \p\pm^P~^\q\ < £ (such an M exists since

0< \p\~X/(P~X)\q\p <1).

Let G Z, m> 0, n>0. If n > m, then s(m,ri) 0, and so

1

ml
s(m, rc)cm(r)£n 0.

Thus we can assume that m max{m, n}. Consider

1

ml
s(m, n)cw(r)£" < |m!|/Mr)! 1erpi* Ip

Utilizing Proposition 3.3 and the fact that < m/(- 1), we can write

\\\;l\cm(r)\p\t\;< \Pqfx \;l\p\;
Suppose that m > M + N. If m-n < M, then

M + N<m<M + n,

so that n > N. Thus

l'"!|;1Mr)U^<kxi;I«"<e.
If m — n > M, then
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\mV\cm(r)\M < Wx\:l\pü(mIp 1-mv J\p\^\p — \r~ux\p \r\p

Either case implies that

—s{m,n)cm{T)C
ml

< e.
p

Therefore, whenever max{myn} > M + N, this bound must hold, implying
that

oo m
^ 00 00 j53 YYn)cm(r)C n)cm(r)C,z—' z—' ml ml

m=0 n=0 n=0 m=n

by Proposition 2.4.

Writing
00 00

^
Ax{s, t) Y2 s"53),z—' z—' ml

n=0 m=n

we have from (13),

^
00 00 j

Lp(s, r; x) r Y]( 1 - s)n53—rs(m,
s — 1 z—' ml

n—0 m=n
oo oo

53 (-i)n+i(i - if 53 1)Cm(r)'
n= — 1 m=n+l

which implies the lemma, since we must have convergence for the inner

sum.

Since we have only derived Lp{s,r\x) f°r T Qp, |r|p < 1, we cannot

say that an(r) is defined for all r G Cp, \r\ < 1. For n G Z, « > —1, let
us define

OO
1

(16) a„(r) (—1)"+1 53 ~~il)cm(r),m!

for these values of r. Note that in the proof of Lemma 3.6, the only influence

generated by the value of r is in the bound of the value of \cm(r)\p, which

was determined in Proposition 3.3. However, this proposition holds for all

r G Cp, \r\p < 1. Thus this sum converges and an(r) is well-defined for all

t e cp, \t\p < l.
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Theorem 3.7. Let r e Cp, \r\p < 1, and let {r/}gj be a sequence in

Qp, with |t,-| < 1, such that T; -+ r. Then for n>-\
lim an(j,-)

Proof. By definition, for re Cp, \r\p < 1, and for G Z, n > -1, we

have the expansion

OO
J

a«0") (-1)"+1 V —:s(m, n + l)cm(r),z' m!
m=n+1

and as we have seen, regardless of the value of r,

+ 1 )cm{r)
ml

as tn—> oo. Therefore given e > 0 there must exist some Z, m0 >
such that

OO

< e.
oo

^E—s(m,n+ 1 )cm(r)
ml

m=m0+1 p

Thus for any sequence in Qp, with | 77 < 1, such that 77 -» 7%

\an{r) - an{rd\ < max <U
1

-s(m,n+1)(cm(r) - cot(t/))
P n+l<m<ra0[ ' m!

Since 77 —> r and cm(r) is a polynomial in r, we see that

1

s(m, n+1) (cm(r) - cm(r/))
ml

< e

for all m with n + 1 < m < mo when i is sufficiently large, which implies
that

KO") - ö,7(t/)|/; < e

for such /. Therefore the theorem must hold.

The purpose of the following three lemmas is to build an upper bound for
the value of \an(r)\ After doing so we can define Lp(s,r;x) f°r all t £ Cp,
M p

<



254 G.J. FOX

LEMMA 3.8. Let p be prime. If iyn G Z with \ < i <n, then

< Mn
IP'

Proof For i G Z such that 1 < i < n, (8) implies that vp(i\) < i — 1, or
equivalently, |z!| > \p\l 1. Therefore by combining this with

(n\ i
)P —vJ P

n(n — 1) • • • (n — i -h 1)

the result will follow.

LEMMA 3.9. Let p be prime. Then for m,n G Z, m > n > 0,

n\

m
s(m, n)qn < \np\p\q

Proof. From (14), the generating function for the s(m,n)9 we obtain

n\

ml

oo

Y —s(m,n)qmf(log(l +
mA

m=0

Thus we wish to evaluate the power of p that divides the coefficient of tm in
the expansion of (log(l + qt))n. The power series expansion of the logarithm
function (10) yields

(iog(i + ^)r
and by factoring qt out of the sum,

/ oo

(log(l + qt)f qnfil+pt^2,

f^q'f
i— 1

v'-iL p-v-v-2
/=2

For i > 2, we see that p lql 1 /i G Zp. Therefore

(log(l + qt))n qnf(\ +ptf(t))n,

where f(t) G Zp[[t]]. Now, this can be written

(log(l + qt)T=qnf + qnf £
and from Lemma 3.8, the p-adic absolute value of the coefficients of the

terms in the sum on the right must be bounded above by \np\p\q\np. Thus, for
m > n, the coefficient of tm must also be bounded above by this quantity,
implying the result.
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Lemma 3.10. Letr e Cp,\t\p< 1, Then for ne Z, > 0,

< 11" ~1

fxn\an(j) w+1 fx(t)(mod 4"°)-

Proof. From (16), we see that for ne Z, n > 0,

OO
I

/xn!a„(r) (-l)"+1 ^
m—n-\-1

Proposition 3.3 implies that

fxcm(T)0 (mod _1o).

By Lemma 3.9, when m > n + 2,

—-s(m, n + 1) 0 (mod pqn~m+lo).
m!

Thus
(_!)"+!

fxn\an(r) ——/xcn+i(r) (mod gno).
n + 1

We are nearing our goal of defining Lp(s,r;x) f°r reCp,
The final step before doing so is proving the following lemma on the

convergence of a specific infinite sum.

LEMMA 3.11. Let r e Cp, frj < 1. Then the sum

OO

y^a„(r)(i - 1)"
n—0

converges for all s G D.

Proof. Let £ e D. Then |£ - l|p < b|p/(p~1)|^|~1. Thus there must be

some 6 e R, 0 < <5 < 1, such that

\t-MP s-\p\

Let ne Z, n > 0. From Lemma 3.10

fx(n+ 1 )!«,(/ (-ir+1/xc„+1(r) (mod (n +
and from Proposition 3.3,

\fxCnei{T)\p S l/^lp kip-
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Therefore

\fx(n+<Ipl^lqÇ

which implies that

\an{r)\p < \fx{n+\)\p\~l\q\np.

Thus

Now,

so that

k(r)(£ - \)\<I fx(n+

vp((n+ 1)!) < —,1

k(-r)(£- 1)"|_ <Ip ^ \Jxy\p

Since 0 < 6 < 1, we see that |a„(r)(£ — l)n| —> 0 as n — oo. Thus the sum

^a«(T)(C - 1)"
n=0

must converge.

Note that from this proof we have obtained the bound

(17) \an(.T)\p<\fx(n+
for each ne Z, n > — 1, and for all T e Cp, \t\ < l.

Now let us define

Lp(s,r;x) -an{r){s- 1)"
s — I

n̂—0

for t e Cp > K < i. and s e D, s ^ 1 if x 1. This definition is

consistent with what we already have for r e Qp, \r\p < 1. We will now
show that, for all T £cp, \t\p < 1, this function satisfies

Lp{1 - n,r;x) (Bn,x„(qr)- Xn(p)pn^B„iXn (p~V))
for each n e Z, n > 1. To do this, we prove the following :

oo
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Lemma 3.12. Let r Cp, |r| p<1, and let be a sequence in

Qp, with \ri\p < 1, such that t,- —» t. Then for each Z, 1,

lim Lp (1 - «, t,; x) M1 - », t; x) •
/—>00

Proof. We can write

oo

t; x) — + Y] am(r)(s - 1)
s — I

m=0

where the power series converges for each s G 3D.

Let e > 0, and let n G Z, n > 1. Then we must have 1 — n G D, and

thus the power series converges for s 1 — n. Also, by (17)

\am(T)(-n)m\p < \fx(m + \nq\p -»• 0

independently of r as m —» oo. Therefore, for mo G Z sufficiently large,

r, am(T)( < e.

P

For r G Cp, |r|p < 1, let be in Qp, with |r/|p < 1, such that 77 —>• r.
Consider

|^p(l-n,T;x)-ip(l-«,t;;x)L < max je, |(am(r) -MrM-ny"! }
y 0<m<mo t

Since tfm(r/) —> am(r) as 77 — r, we have

|LP(1 - », r; X) - Ml ~ ">r«5X)lp < e

for i sufficiently large. Thus the lemma must hold.

At this point we have finally proven

THEOREM 3.13. For each r G Cp, with \r\p < 1, there exists a unique
p-adic, meromorphic function Lp(s,r;x) that satisfies

M1 - «,t;x) -- (B„tXn(qT) - (/>"V))
for each neZ, n>1. Furthermore, this function can be expressed in the
form

/ \ oo
r / \ a—\\T) \—-vLp(s,t;x) p + an(T)(s - 1)",

n=0
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where the power series converges in the domain D, and

l-i, 1

1
•

Since Lp(s, r; x) is defined for each t e Cp such that | r) < 1, we now
have a p-adic function of two variables, Lp(s7t;x)i where s £ D, s ^ 1 if
X 1, and t £ Cp with \t\p < 1.

4. Properties of t; x)

Most of the properties that follow are direct consequences of similar

properties that hold for the generalized Bernoulli polynomials. In all of the

following we will take p prime and x a Dirichlet character with conductor fx.

4.1 A SYMMETRY PROPERTY IN t

The first property we obtain regarding Lp(sft\x) is a direct consequence
of the generalized Bernoulli polynomials being either odd or even functions,

except when x 1- Recall that Lp(s,t;x) interpolates the values

(18) Lp(l-n,t,x)~~-bn(t),
n

for n G Z, n> 1, and t G Cp, |*| < 1, where

(19) bn(t)B„tXn(qf)-Xn(p)pn~lBn}Xii (p~lqt)

and we define

(20) Cn(t)Y,0m=0 ^ '

LEMMA 4.1. For all n £ Z, n> 0, we have

BnA-t) (-iy%,i(0 -
Proof. This holds for n 0 since 2?o,i(0 — 1

• Now assume that n > 1.

Because Z?n i 0 for odd n > 3, we can write (2) in the form

m=0
n—m even

^/I,l(0 — f J FnBi^Pn— 1
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