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LEMMA 2.3. Let 7 € C,. In the field Q,(x,T), forall nel, n=>0,

pfx

Bny, (1) = lim —— Z ya(@)a+7)".

h—oo hfx

Proof. By applying Lemma 2.2 to (4), we obtain

thx
B,, = lim —— Z x(a)a"
h—o0 p X =1
Therefore, by (2),
n 7 1 thxn
B =3 (1) tim > e
1 phfx,, n "
= lim Xn(a@) ( )T"_ma’"
i i 2 0@,

Since f, and f,, differ by a factor that is a power of p, we must have

Pfx

1
Br(T) = Jim Z Xn(@)(a+ )",
X 4

and the proof is complete. [

2.5 p-ADIC FUNCTIONS

Let K be an extension of Q, contained in C,. An infinite series >, a,,
a, € K, converges in K if and only if lanlp — 0 as n — oco. Let K[[x]] be
the algebra of formal power series in x. Then it follows that a power series

Alx) = i apx"
n=0

in K[[x]], converges at x =&, £ € C,, if and only if |an§”|p — 0 as n — 00.
Therefore whenever a power series A(x) converges at some &, € C,, then it

must converge at all £ € C, such that |£]) < [ Ip. The following result, for
double series in K, can be found in [8].

kl.____“ S
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PROPOSITION 2.4. Let b, € K, and suppose that for each € > 0 there
exists N € Z, depending on ¢, such that if max{n,m} > N, then |b, [p <e.
Then both series

Z(anm> and Z(me>

n=0 m=0 \n=0

converge, and their sums are equal.

There are two power series that we wish to make note of in particular.
First we define the p-adic exponential function, exp(x), in Q,[[x]], by

1
©) exp(r) = ) —"
n=0

From (8) we can conclude that this power series converges in {x € C,
x|, < p~Y/P=D}  The p-adic logarithm function, log(x), in Q,[[x]], is
defined by

o0 (_1)n—1
(10) log(1+x) =Y —
n=1

the power series converging in the domain {x € C, : |x|, < 1}. For
x|, < p~ /(=1 we have log(exp(x)) = x and exp(log(l +x)) = 1 + x.

The following property is a uniqueness property for power series, found
in [13].

LEMMA 2.5. Let A(x),B(x) € Kl[[x]l, such that each converges in a
neighborhood of 0 in C,. If A(&,) = B(&,) for a sequence {£,152,, &, # 0,
in C,, such that- &, — 0, then A(x) = B(x).

Let U be an open subset of C,, contained in the domain of the p-adic
function f. We say that f is differentiable at x € U if the limit

P — fim TEEP =@

h—0 h

exists. If this limit exists for each x € U, then we say that f is differentiable
in U.

The relationship between the derivatives of a function and its power series
expansion is given in the following result, found in [8].
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PROPOSITION 2.6. Let S.°0 a,x" be a power series with coefficients in
C,, and suppose that

oo

fo) =) anlx— o)’

n=0

converges on some closed ball B in C,. Then
i) For each x € B, the k™" derivative f®(x) exists, and is given by

FO@ =k (Z) an(x — )",

n=k

and we have

1
ay = ‘k—!f(k)(a) -

ii) Let 3 € B. Then there exists a series y o bnX" such that
f) =Y bux— B’
n=>0

for any x € B. Both series Z,(:O:o a,x" and Z;io b,x" have the same region
of convergence.

Now let K be a finite extension of Q,. For A(x) € K[[x]], A(x) =
> o anx", where a, € K, define

|A]l = sup |an‘p ~

Let Px = {A(x) € K[[x]] : ||A|| < co}. Then ||-|| defines a norm on Py, and
so K[x] C Px C K[[x]]. Furthermore Py is complete in this norm.

Let {b,},2, be a sequence of elements of K, and let the sequence {c,}>2,
be defined by

(11) =Y (Z)(—l)"—'"bm

m=0

for each n € Z, n > 0. Then ¢, € K for each n > 0. Note that (11) implies
that these sequences must satisfy

oo 1

o0 Z‘n
_ —r
E Ch— = ¢€ b, — .
n!

|
n=0 n=0 n
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This implies that

00 o0
3 r" » "
bn—? =€ Cn——',
n! n
n=0 n=0

and so we have the relationship

(12) b, = Z (:2) C

m=0
for each n € Z, n > 0. We can reverse this process to derive (11) given (12).
Thus (11) and (12) must be equivalent. The following relate to sequences that
satisfy (11) and (12), and are found in [13].

THEOREM 2.7. Let {b,}2, and {c,}2, be defined as in the above
relation. Let p € R such that 0 < p < |p|;/(p_1). If |enl, < Cp" for all
n > 0, where C > 0, then there exists a unique power series A(x) € Pg
such that A(x) converges at every £ € C, with |{|, < }pl;/(pal)p_l, and

A(n) = b, for every n > 0.

COROLLARY 2.8. Let A(x) be the power series from the theorem. Then
for each ¢ € C, such that |£], < |p|[1)/(p—l)p”1, we have

A@y=§:%<i)

n=0

Theorem 2.7 can be applied to the sequence {b,}.2, in K = Q,(x),
where
by = (1= Xa(P)P"™") Bux,
in order to obtain a power series A, (s) satisfying A, (n) = b,, and converging
on the domain {s € C, : [s|, < lp];/(p_l)lqlp_l}. (Since lplé/“p_l)|q|[;1 > 1
and |n]p < 1 for each n € Z, all of Z is contained in this domain.) From
this a p-adic function, L,(s;X), can be derived that interpolates the values

1
LA —nmx)=——bu,

and which converges in {s € C, : [s — 1], < Ipl;/(p_1)|q{p_1}, except s # 1 if
x = 1. Note that if x is odd, then Y, is even when 7 is odd, and X, is odd
when 7 is even. Thus the quantity (1 — x,( p)p"“l)B,z,Xn =0 forall neZ,
n > 1, as we saw from the properties of generalized Bernoulli numbers.
Therefore L,(s;x) vanishes on a sequence such as {—p™}°2 ,, which has 0

as a limit point, implying that for such x we must have L,(s;x) = 0.
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