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Since any Dirichlet character x is multiplicative, we must have x(—1) = *1.
A character x is said to be odd if x(—1) = —1, and even if x(—1) = 1.

72  GENERALIZED BERNOULLI POLYNOMIALS

Let x be a Dirichlet character with conductor f. Then we define the
functions, B, (), n € Z, n > 0, by the generating function
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We define the generalized Bernoulli numbers associated with x, By, n € Z,
n >0, by
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so that B, ,(0) = B, . Note that
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which implies that
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and from this we obtain

(2) Bn,x(t) = Z <::L> Bﬂ-m,xfm .

m=0

Thus the functions B, ,(¢), defined in (1), are actually polynomials, called
the generalized Bernoulli polynomials associated with x. Let Z[x] denote
the ring generated over Z by all the values x(a), a € Z, and Q(x) the field
generated over Q by all such values. Then it can be shown that f, B, , must
be in Z[x] for each n > 0 whenever x # 1. In general, we have B, , € Q(x)

for each n > 0, and so B, (1) € Q()[t]. The polynomials B, () exhibit
the property that, for all » > 0,

(3) Bn,x(_t) — (_1)nX(_l)Bn,x(t)7

whenever x # 1. Thus B, ,(f), for x # 1, is either an even function or an
odd function according to whether (—1)"x(—1) is 1 or —1. From (3) we
obtain
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Bn,x = (—l)nX(_l)Bn,x )

and so B,, = 0 whenever n is even and x is odd, or whenever n is odd
and x 1is even, x # 1. Another property that the polynomials satisfy is that
for meZ, m>1,

mfy

4) Bux(mfy +1) = Buy () =1 x(@)a+"",

a=1

for all n > 0. This can be derived from (1). Note that for y =1 and r =0
this becomes

1
- Bn,l(m) _Bn,l) = an—l.
~

If x # 1, then it can be shown that Z{,X:l x(a) = 0, and from the above
relations we can derive

1
Box =+ »_ X
X a=1
for all y. Therefore
0, if x#1
BO,X = { )
I, if x=1.

The ordinary Bernoulli polynomials, B,(t), n € Z, n > 0, are defined by
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and the Bernoulli numbers, B,, n € Z, n > 0,
(oo
X x"
o 1 — ;Bn;’z—!) I.Xl < 2.

From this we obtain the values By = 1, By = —1/2, B, = 1/6,
By = —1/30,..., with B, = 0 for odd n > 3. For even n > 2, we
have 1

1 <= /n+1
B = — By .
" n—}—lr;)( m )

Note that we again have the relations B,(0) = B, and

B,(t) = Zn: (;)Bn—-mlma

m=0

as we did for the generalized Bernoulli polynomials.
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Some of the more important properties of Bernoulli polynomials are that
(©6) B,(t+ 1) — By(t) = nt"™!

for all n > 1, and
B,(1 — 1) = (—1)"B,(?)

for n > 0. Each of these results can be derived from the generating function
(5) above. '

Similar to (4) for the generalized Bernoulli polynomials, whenever
mn € L, m>1,n>1,
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where we take 0° to be 1 in the case of a = 0 and n = 1. Note that this
can be derived from (6) since

m—1

Bu(m) =B, =Y (Bu(a+1) — B(a)) .

a=0

The Bernoulli numbers are rational numbers, and, in fact, the von Staudt-
Clausen theorem states that for even n > 2,

B+Z—-€Z
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Thus the denominator of each B, must be square-free.

The ordinary Bernoulli numbers are related to the generalized Bernoulli
numbers in that for y =1 we have

o0

Z ——' |x\ < 2,
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and since
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we see that B, = B, for all n # 1, and Bi1 = —B;. In fact, this can be
written as B, ; = (—1)"B,, and for the polynomials, B, 1(t) = (—=1)"B,(—1).
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