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A p-ADIC L-FUNCTION OF TWO VARIABLES 233

THEOREM 4.12. Let n, ¢, and k be positive integers, and let T € Z,
such that |T| < [pq_lFo ‘p. Then the gquantity

_1 —IA
(q kAC> B (T) — (q 2 C) Bnx(0) € Zyl[Xx],

and, modulo qZ,|x], is independent of n.

These results show that if related congruences hold for

1
ﬁn,x(o) - _;’—l (1 - Xn(p)pn_l)Bn,x,, ’

then they must also hold for (,,(r), where 7 is any element of Z, such
that |7, < ‘pq“lFolp.
In [9] Granville defined ordinary Bernoulli numbers of negative index,
B_,, where n € Z, n > 1, in the field Q, according to
B_n = lim B(]ﬁ(pk)—na

k— o0

where the limit is taken in the p-adic sense. In a similar manner we define
generalized Bernoulli numbers of negative index, B_,,, n € Z, n > 1, and
a collection of functions that correspond to generalized Bernoulli polynomials
of negative index, B_, ,(t), n € Z, n > 1. As a result of our definitions, we
show that the B_, () are actually power series that can be written in the

form
—n
By =3 < " >B_n_m,xtm,

m=0

converging for t € C,, It{p < 1. We close out by considering some properties
of these functions.

2. PRELIMINARIES

The p-adic L-functions, L,(s;x), were first generated by Kubota and
Leopoldt for the purpose of finding functions that would serve as analogues
of the Dirichlet L-functions in the p-adic number field [14]. They are char-
acterized by the fact that they interpolate a specific expression involving
generalized Bernoulli numbers when the variable s is a nonpositive integer.
In the following, for each 7 € C,, |7‘|p < 1, we derive a p-adic func-
tion L,(s,7;x) that interpolates a specific expression involving generalized
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Bernoulli polynomials in 7 for similar values of the variable s. These func-
tions are designed so that L,(s,0;%) = L,(s;x). The method of derivation
follows that found in [13], Chapter 3. However, this method will only account
for those 7 € Q, with 7|, < 1. To complete the derivation we show that
there exist functions L,(s,7;x) for all 7€ C,, |7| , <1, such that for every
sequence {7;}%, in Q,, with | |, < 1, converging to some 7 € C,, the se-
quence {L,(1—n,7;x)}2,, with n € Z, n > 1, converges to L,(1 —n,T;x).
Thus for each 7 € C,, ]Tlp < 1, the function L,(s,7;x) must interpolate
the appropriate expressions involving generalized Bernoulli polynomials for
s=1—-n,neZ, n>1.

Before we begin the derivation, we must first define the concepts that we
shall need and review some of their resulting properties.

2.1 DIRICHLET CHARACTERS

For n € Z, n > 1, a Dirichlet character to the modulus » is a multiplicative
map x : Z — C such that x(a+n) = x(a) for all a € Z, and x(a) = 0 if and
only if (a,n) # 1. Since a®™ =1 (mod n) for all a such that (a,n) = 1,
x(a) must be a root of unity for such a.

If x is a Dirichlet character to the modulus #, then for any positive
multiple m of n we can induce a Dirichlet character 1/ to the modulus m
according to

x(@), if (a,m) =1

via) = { 0, if (a,m) # 1.

The minimum modulus n for which a character y cannot be induced from
some character to the modulus m, m < n, is called the conductor of y,
denoted f, . We shall assume that each x is defined modulo its conductor.
Such a character is said to be primitive.

For primitive Dirichlet characters x and 1) having conductors f, and fy,
respectively, we define the product, x7y, to be the primitive character with
x¥(a) = x(a)y(a) for all a € Z such that (a,f, fy) = 1. Note that there
may exist some values of a such that xi(a) # x(a)y(a), due to the fact that
our definition requires %) to be a primitive character. The conductor f,.,
then divides lem(f,,fy). With this operation defined, we can then consider
the set of primitive Dirichlet characters to form a group under multiplication.
The identity of the group is the principal character x = 1, having conductor
fi = 1. The inverse of the character x is the character ™' =, the map of
complex conjugates of the values of x.
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Since any Dirichlet character x is multiplicative, we must have x(—1) = *1.
A character x is said to be odd if x(—1) = —1, and even if x(—1) = 1.

72  GENERALIZED BERNOULLI POLYNOMIALS

Let x be a Dirichlet character with conductor f. Then we define the
functions, B, (), n € Z, n > 0, by the generating function

efx* — 1 X

y(@)xe@t* — x" 27
(1) Z - ZBH’X(Z‘)E!_7 ‘xl < =
n=0

We define the generalized Bernoulli numbers associated with x, By, n € Z,
n >0, by

Ix . 00
x(a)xe™ x" 27r
Zefxx—l -ZBn,xav lxl <z

a=1 n=>0 X
so that B, ,(0) = B, . Note that

Z X(a)xe(a—}—l‘)k erxfi y(@)xe™
eixr—1

which implies that

o0

x"
5 Bn,xg) __erxg Bn,xﬁ—‘a
n=0 n=0 '

and from this we obtain

(2) Bn,x(t) = Z <::L> Bﬂ-m,xfm .

m=0

Thus the functions B, ,(¢), defined in (1), are actually polynomials, called
the generalized Bernoulli polynomials associated with x. Let Z[x] denote
the ring generated over Z by all the values x(a), a € Z, and Q(x) the field
generated over Q by all such values. Then it can be shown that f, B, , must
be in Z[x] for each n > 0 whenever x # 1. In general, we have B, , € Q(x)

for each n > 0, and so B, (1) € Q()[t]. The polynomials B, () exhibit
the property that, for all » > 0,

(3) Bn,x(_t) — (_1)nX(_l)Bn,x(t)7

whenever x # 1. Thus B, ,(f), for x # 1, is either an even function or an
odd function according to whether (—1)"x(—1) is 1 or —1. From (3) we
obtain
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Bn,x = (—l)nX(_l)Bn,x )

and so B,, = 0 whenever n is even and x is odd, or whenever n is odd
and x 1is even, x # 1. Another property that the polynomials satisfy is that
for meZ, m>1,

mfy

4) Bux(mfy +1) = Buy () =1 x(@)a+"",

a=1

for all n > 0. This can be derived from (1). Note that for y =1 and r =0
this becomes

1
- Bn,l(m) _Bn,l) = an—l.
~

If x # 1, then it can be shown that Z{,X:l x(a) = 0, and from the above
relations we can derive

1
Box =+ »_ X
X a=1
for all y. Therefore
0, if x#1
BO,X = { )
I, if x=1.

The ordinary Bernoulli polynomials, B,(t), n € Z, n > 0, are defined by

xe

)

e —

tx o X"
o= Bu0—, |xl <2m,
n=0

and the Bernoulli numbers, B,, n € Z, n > 0,
(oo
X x"
o 1 — ;Bn;’z—!) I.Xl < 2.

From this we obtain the values By = 1, By = —1/2, B, = 1/6,
By = —1/30,..., with B, = 0 for odd n > 3. For even n > 2, we
have 1

1 <= /n+1
B = — By .
" n—}—lr;)( m )

Note that we again have the relations B,(0) = B, and

B,(t) = Zn: (;)Bn—-mlma

m=0

as we did for the generalized Bernoulli polynomials.
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Some of the more important properties of Bernoulli polynomials are that
(©6) B,(t+ 1) — By(t) = nt"™!

for all n > 1, and
B,(1 — 1) = (—1)"B,(?)

for n > 0. Each of these results can be derived from the generating function
(5) above. '

Similar to (4) for the generalized Bernoulli polynomials, whenever
mn € L, m>1,n>1,

m—1
1 —1
- Bn — Bn = " s
- (Bn(m) ) ;:O a

where we take 0° to be 1 in the case of a = 0 and n = 1. Note that this
can be derived from (6) since

m—1

Bu(m) =B, =Y (Bu(a+1) — B(a)) .

a=0

The Bernoulli numbers are rational numbers, and, in fact, the von Staudt-
Clausen theorem states that for even n > 2,

B+Z—-€Z

prlme
(p—D)n

Thus the denominator of each B, must be square-free.

The ordinary Bernoulli numbers are related to the generalized Bernoulli
numbers in that for y =1 we have

o0

Z ——' |x\ < 2,

n=0

and since

xe* I X
c—1 T a1

we see that B, = B, for all n # 1, and Bi1 = —B;. In fact, this can be
written as B, ; = (—1)"B,, and for the polynomials, B, 1(t) = (—=1)"B,(—1).
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2.3  DIRICHLET L-FUNCTIONS

For x a Dirichlet character with conductor f,, the Dirichlet L-function
for x is defined by

2 x(b
Lis;x) = ) XIES)’
b=1

for s € C such that R(s) > 1. Note that L(s;x) can be continued analytically
to all of C, except for a pole of order 1 at s =1 when y = 1.

Let 7(x) be a Gauss sum,

fx
00 = Y x(@e*™

a=1]
where > = —1, and let

{Q if v(—1) =1
by = ,
1, if x(—=1)= —1.

Then L(s;x) satisfies the functional equation

5/2 (1—5)/2 .
% (’3—) F(SJ;‘SX)L(s;x):WX(%) r(lﬂﬁ(l—s;@,

i 2

where T'(s) is the gamma function, and W, = —~%)_  having the propert
L‘SX-\/E property

that |W, | = 1. Since I'(s) has simple poles at the negative integers, L(s;x)
must be zero for s =1 —n, where n € Z, n > 1, such that n # 4, (mod 2),
except when y =1 and n = 1. L(s;x) can also be described by means of
the Buler product L(s;x) = [T, prime (1 — X( p)p_s)_1 , for s € C such that
R(s) > 1. Thus L(s;x) # 0 in this domain.

The generalized Bernoulli numbers, B, ., and the Dirichlet L-function,
L(s; x), share the following relationship, a proof of this being found in [13]:

THEOREM 2.1. Let x be a Dirichlet character, and let n € 2., n > 1.
Then L(1 —n;y) = —%Bn,x.
Thus we have a way to express certain values of a function defined in terms
of an infinite sum as quantities that can be found by a finite process.
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2.4 THE p-ADIC NUMBER FIELD

Let p be prime. We shall use Z, to represent the p-adic integers, and
Q, the p-adic rationals. Let Hp denote the p-adic absolute value on Q,,
normalized so that |p|, = p~'. Let Q, be the algebraic closure of Q,. The
absolute value on Q, extends uniquely to Q,, however Gp is not complete
with respect to the absolute value. Let C, be the completion of Q—p with
respect to this absolute value. Then the absolute value extends to C,, and Gp
is dense in C,. We also have C, algebraically closed. Furthermore, on C,
the absolute value is non-Archimedean, and so

@+ b|, < max{|a],, |b],}

for any a,b € C,. Note that the two fields C and C, are algebraically
isomorphic, and any one of the two can be embedded in the other. We denote
two particular subrings of C, in the following manner

0 ={a€C,:lal, <1}, p={acCp:lal, <1}

Then p is a maximal ideal of o. If 7 € C, such that |7|, < |p| , where
s € Q, then 7 € po, and so we shall also write this as 7 = 0 (mod p’o).

Any n € Z, n > 0, can be uniquely expressed in the form n = anzo amp™,
where a, € Z, 0 <a, <p—1, for m=0,1,...,k, and a; # 0. For such
n, we define

the sum of the p-adic digits of n, and also define $,(0) = 0. For any n € Z,
let v,(n) be the highest power of p dividing n. This function is additive, and
relates to the function s,(n) by means of the identity

n—s,(n)
8 )= PV~
®) v = ==,
which holds for all » > 0. Note that for n > 1 this implies that
n—1
N < )
%M)_p_l

The definition of this function can be extended to all of Q by taking
vp(1/n) = —uy(n).

Throughout we let g =4 if p=2, and g = p otherwise. Note that there
exist ¢(g) distinct solutions, modulo g, to the equation x*@ —1 = 0, and each
solution must be congruent to one of the values a Z, where 1 < a <gq,
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(a,p) = 1. Thus, by Hensel’s Lemma, given a € Z with (a,p) = 1, there
exists a unique w(a) € Z,, where w(a)®?? = 1, such that

w(a) = a (mod gZ,).

Letting w(a) =0 for a € Z such that (a,p) # 1, we see that w is actually a
Dirichlet character, called the Teichmiiller character, having conductor f,, = g.
Let us define

(a) = w N a)a.

Then (a) = 1 (mod gZ,). For p > 3, lim,_ @’ = w(a), since
" =a (mod p) and & ?~V =1 (mod p"*t?).

For our purposes we shall need to make a slight extension of the definition
of the Teichmiiller character w. If ¢ € C, such that |¢|, <1, then for any
acZ, a+ gt =a (mod go). Thus we define

w(a + gt) = w(a)
for these values of ¢. We also define
(a+qt) = w™ (@)@ + q1)

for such t.

Fix an embedding of the algebraic closure of Q, Q, into C,. We may
then consider the values of a Dirichlet character x as lying in C,. For n € Z
we define the product x, = xyw™" in the sense of the product of characters.
This implies that f,, | f,q. However, since we can write x = x,w", we also
have f, | fx,q.- Thus f, and f,, differ by a factor that is a power of p. In
fact, either f,,/f,, € Z and divides ¢, or f, /f,, € Z and divides gq.

Let Q,(x) denote the field generated over Q, by all values x(a), a € Z.
In this context we can state the following, found in [13] (pp. 14-15).

LEMMA 2.2. In the field Qy(x), for all n€ Z, n >0,

1 1
Hm —— (But1 (P"fx) — Brt1,x(0)) -

B, =
e n+1hnr-00 phfx

From this we can obtain
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LEMMA 2.3. Let 7 € C,. In the field Q,(x,T), forall nel, n=>0,

pfx

Bny, (1) = lim —— Z ya(@)a+7)".

h—oo hfx

Proof. By applying Lemma 2.2 to (4), we obtain

thx
B,, = lim —— Z x(a)a"
h—o0 p X =1
Therefore, by (2),
n 7 1 thxn
B =3 (1) tim > e
1 phfx,, n "
= lim Xn(a@) ( )T"_ma’"
i i 2 0@,

Since f, and f,, differ by a factor that is a power of p, we must have

Pfx

1
Br(T) = Jim Z Xn(@)(a+ )",
X 4

and the proof is complete. [

2.5 p-ADIC FUNCTIONS

Let K be an extension of Q, contained in C,. An infinite series >, a,,
a, € K, converges in K if and only if lanlp — 0 as n — oco. Let K[[x]] be
the algebra of formal power series in x. Then it follows that a power series

Alx) = i apx"
n=0

in K[[x]], converges at x =&, £ € C,, if and only if |an§”|p — 0 as n — 00.
Therefore whenever a power series A(x) converges at some &, € C,, then it

must converge at all £ € C, such that |£]) < [ Ip. The following result, for
double series in K, can be found in [8].

kl.____“ S
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PROPOSITION 2.4. Let b, € K, and suppose that for each € > 0 there
exists N € Z, depending on ¢, such that if max{n,m} > N, then |b, [p <e.
Then both series

Z(anm> and Z(me>

n=0 m=0 \n=0

converge, and their sums are equal.

There are two power series that we wish to make note of in particular.
First we define the p-adic exponential function, exp(x), in Q,[[x]], by

1
©) exp(r) = ) —"
n=0

From (8) we can conclude that this power series converges in {x € C,
x|, < p~Y/P=D}  The p-adic logarithm function, log(x), in Q,[[x]], is
defined by

o0 (_1)n—1
(10) log(1+x) =Y —
n=1

the power series converging in the domain {x € C, : |x|, < 1}. For
x|, < p~ /(=1 we have log(exp(x)) = x and exp(log(l +x)) = 1 + x.

The following property is a uniqueness property for power series, found
in [13].

LEMMA 2.5. Let A(x),B(x) € Kl[[x]l, such that each converges in a
neighborhood of 0 in C,. If A(&,) = B(&,) for a sequence {£,152,, &, # 0,
in C,, such that- &, — 0, then A(x) = B(x).

Let U be an open subset of C,, contained in the domain of the p-adic
function f. We say that f is differentiable at x € U if the limit

P — fim TEEP =@

h—0 h

exists. If this limit exists for each x € U, then we say that f is differentiable
in U.

The relationship between the derivatives of a function and its power series
expansion is given in the following result, found in [8].
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PROPOSITION 2.6. Let S.°0 a,x" be a power series with coefficients in
C,, and suppose that

oo

fo) =) anlx— o)’

n=0

converges on some closed ball B in C,. Then
i) For each x € B, the k™" derivative f®(x) exists, and is given by

FO@ =k (Z) an(x — )",

n=k

and we have

1
ay = ‘k—!f(k)(a) -

ii) Let 3 € B. Then there exists a series y o bnX" such that
f) =Y bux— B’
n=>0

for any x € B. Both series Z,(:O:o a,x" and Z;io b,x" have the same region
of convergence.

Now let K be a finite extension of Q,. For A(x) € K[[x]], A(x) =
> o anx", where a, € K, define

|A]l = sup |an‘p ~

Let Px = {A(x) € K[[x]] : ||A|| < co}. Then ||-|| defines a norm on Py, and
so K[x] C Px C K[[x]]. Furthermore Py is complete in this norm.

Let {b,},2, be a sequence of elements of K, and let the sequence {c,}>2,
be defined by

(11) =Y (Z)(—l)"—'"bm

m=0

for each n € Z, n > 0. Then ¢, € K for each n > 0. Note that (11) implies
that these sequences must satisfy

oo 1

o0 Z‘n
_ —r
E Ch— = ¢€ b, — .
n!

|
n=0 n=0 n
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This implies that

00 o0
3 r" » "
bn—? =€ Cn——',
n! n
n=0 n=0

and so we have the relationship

(12) b, = Z (:2) C

m=0
for each n € Z, n > 0. We can reverse this process to derive (11) given (12).
Thus (11) and (12) must be equivalent. The following relate to sequences that
satisfy (11) and (12), and are found in [13].

THEOREM 2.7. Let {b,}2, and {c,}2, be defined as in the above
relation. Let p € R such that 0 < p < |p|;/(p_1). If |enl, < Cp" for all
n > 0, where C > 0, then there exists a unique power series A(x) € Pg
such that A(x) converges at every £ € C, with |{|, < }pl;/(pal)p_l, and

A(n) = b, for every n > 0.

COROLLARY 2.8. Let A(x) be the power series from the theorem. Then
for each ¢ € C, such that |£], < |p|[1)/(p—l)p”1, we have

A@y=§:%<i)

n=0

Theorem 2.7 can be applied to the sequence {b,}.2, in K = Q,(x),
where
by = (1= Xa(P)P"™") Bux,
in order to obtain a power series A, (s) satisfying A, (n) = b,, and converging
on the domain {s € C, : [s|, < lp];/(p_l)lqlp_l}. (Since lplé/“p_l)|q|[;1 > 1
and |n]p < 1 for each n € Z, all of Z is contained in this domain.) From
this a p-adic function, L,(s;X), can be derived that interpolates the values

1
LA —nmx)=——bu,

and which converges in {s € C, : [s — 1], < Ipl;/(p_1)|q{p_1}, except s # 1 if
x = 1. Note that if x is odd, then Y, is even when 7 is odd, and X, is odd
when 7 is even. Thus the quantity (1 — x,( p)p"“l)B,z,Xn =0 forall neZ,
n > 1, as we saw from the properties of generalized Bernoulli numbers.
Therefore L,(s;x) vanishes on a sequence such as {—p™}°2 ,, which has 0

as a limit point, implying that for such x we must have L,(s;x) = 0.
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