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20 P. BAUM AND A. CONNES

REMARK 3. For G discrete the reduced C*-algebra of G, denoted C*G,

comes equipped with a trace. An element in C*G is a formal sum ) A, g
g€iG
where A\, € C. The trace of such an element is A; where 1 is the identity

element of G. This trace then induces a map
tr: Ko C*'G — R.

Let Z be a proper G-manifold and let D be a G-invariant elliptic operator
on Z.If ¢ is the symbol of D then (Z,€) is a K-cocycle for (-,G) and the
Chern character defined above assigns to (Z, &)

ch(Z,¢) € H.(BG;C).

Let €: BG — - be the map of BG to a point. Identify H.(-,C) = C and
consider

ex.ch(Z,&) e C.
The K-theory index of the elliptic operator D is an element of Ko C*G
Index(D) € Ko C*G.
We then have the following formula for tr[Index(D)] :
tr[Index(D)] = €, ch(Z, £).

For the special case when the action of G on Z is free this formula was
obtained by M.E. Atiyah [3].

7. COROLLARIES OF THE ISOMORPHISM CONJECTURE

The conjecture stated in §2 above asserts that
p: K*(X,G) — K. [Co(X) x G]

is an isomorphism. Suppose that G is a discrete group and X is a point. The
conjecture then asserts that p: K*(-,G) — K.C*G is an isomorphism where
C*G is the reduced C*-algebra of G. Throughout this section G will be a
discrete group and we shall consider some corollaries of the conjecture that
p: K%, G) — Ko C*G is an isomorphism. “Proof” will mean “Proof modulo
the conjecture”.
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COROLLARY 1. If G is torsion free then tr: Ko C*G — R maps Ko c*G
onto the integers 7.

“Proof”. Let (Z,€) be a K-cocycle for (-,G). Let D be a G -invariant
elliptic operator on Z whose symbol is £. By the definition of u: K%-,G) —
Ko C*G given in §2 above

w(Z, &) = Index(D) .

If G is torsion free then the action of G on Z must be free. Hence Atiyah’s
result applies [3] and tr{Index(D)] must be an integer. Thus the surjectivity
of u: K%-,G) — Ky C*G implies that tr: Ko C*G — R takes on only integer
values. [

COROLLARY 2. If G is torsion free then there are no non-trivial projections
in C*G.

“Proof”. A non-trivial projections in C*G would give an element
a € Ko C*G with 0 < tr(e) < 1.  [J

REMARK 3. For G torsion-free abelian, Corollary 2 can be proved by
applying Pontrjagin duality. At the other extreme, Pimsner and Voiculescu
[27] have proved that Corollary 2 is valid for a finitely generated free group.

In the statement of Corollary 2 it is essential that C*G be the reduced
C*-algebra of G. Corollary 2 is not valid if one uses the maximal C*-algebra
Crnax G -

A classical conjecture [24] in the theory of group rings is that the group
ring of a torsion-free group has no (non-trivial) divisors of zero. J. Cohen
has observed that Corollaries 1 and 2 may be relevant to this. zero-divisor
conjecture.

If G has torsion then we conjecture that tr: Ko C*G — R maps Kg C*G
onto the additive subgroup of Q generated by all rational numbers of the
form % where n is the order of a finite subgroup of G. This would follow
from the conjectured surjectivity of K°(-,G) — Ky, C*G plus the unproved
assertion that tr[Index(D)] can only take on such values, where D is any
G -invariant elliptic operator on a proper G -manifold.

COROLLARY 4. The Novikov conjecture on homotopy invariance of higher
signatures [11].

“Proof”. Let M be a closed oriented C*°-manifold, G = 7;(M) and let
f:M — BG be the classifying map of the universal covering space of M.

[ VU
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The Novikov conjecture is that
(L(M) U f*(a), [M])

1s an invariant of oriented homotopy type, where L(M) is the total L class
of TM and a is any element in H*(BG; Q).
Kasparov [19] and Miscenko-Fomenko [21] [22] define a map

Ko(BG) — Ko C*G

and prove that the Novikov conjecture is implied by its rational injectivity.
This enabled them to prove the Novikov conjecture for any discrete subgroup
of a linear Lie group. The relation with our conjecture is clear from the
following commutative diagram

Ko(BG) —— Ko C*G

N\ /

and the Proposition of § 6 above. (In this factorization, the topological definition
of K-homology given in [9] is being used.) []

COROLLARY 5. (Stable) Riemannian geometry conjectures of Gromov-
Lawson-Rosenberg [30].

For the same reason our conjecture implies the stable!) form of the
Riemannian geometry conjectures of Gromov-Lawson-Rosenberg [30] on
topological obstructions to the existence of metrics of positive scalar curvature.

8. TWISTING BY A 2-COCYCLE

This section is motivated by the papers [16], [26], [29], on the range of the
trace for the C*-algebra of the projective regular representation of a discrete
group.

All of §2 adapts to the projective situation where together with the
G-manifold X one is given a 2-cocycle v € Z*(X x G, S*). For simplicity we

1) Paul Baum comments: It is important to emphasize “stable” because Thomas Schick has
shown that the original unstable Gromov-Lawson-Rosenberg conjecture is false. On the other hand,
Stephan Stolz (with contributions from J Rosenberg and others) has proved that the real form
of Baum-Connes implies the stable Gromov-Lawson-Rosenberg conjecture Also, Max Karoubi
and I have proved that the usual (ie complex K-theory) form of Baum-Connes implies the real
form of Baum-Connes
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