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A p-ADIC L-FUNCTION OF TWO VARIABLES

by Glenn J. FOx™)

ABSTRACT. For p prime and x a primitive Dirichlet character, we derive a p-adic
function L,(s,1; x), where 1 € Cp, [t|, <1, and s € C,, [s—1], < |p|11,/(p—1)|q|p_l,
s#1if x =1, with g=4 if p=2 and g = p if p > 2, that interpolates the values

1 - _
Ly(l=n,t0) = — (Bra(@) = Xn( PP Bra (p™'a1) )

for n € Z, n > 1. Here B, ,(¢) is the n™ generalized Bernoulli polynomial associated
with the character x, and x, = xw™", where w is the Teichmiiller character. This
function is then a two-variable analogue of the p-adic L-function L,(s;Xx), where

s€GC, [s—1], < Iplpl,/(”_l)|q|;l, s # 1 if y = 1, in that this function satisfies

L,(s,0;x) = Ly(s;x). In addition to deriving this function, we establish several
properties and applications of L,(s,;X).

1. INTRODUCTION

Given a primitive Dirichlet character x, having conductor f, (see Section 2
for definitions), the Dirichlet L-function associated with x is defined by

— x(b)
b’

L(s;x) =

b=1
where s € C, R(s) > 1. This function can be continued analytically to the
entire complex plane, except for a simple pole at s = 1 when y = 1, in
which case we have the Riemann zeta function, ((s) = L(s;1). It is believed
that the analysis of Dirichlet L-functions began with Euler’s study of ((s), in
which he considered the function only for real values of s. It was Riemann

‘*) A majority of these results were obtained while the author was a graduate student at the
University of Georgia, Athens, under the direction of Andrew Granville.
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who extended this study to a complex variable [17]. Of notable interest are
the values of L(s;x) at s = n, n € Z. Euler was able to evaluate ((s)
at the positive even integers. However, the determination of the values of
this function at odd s > 3 remains an open problem. Similarly, the values of
L(s;x) can be determined at either the positive even or odd integers depending
on the sign of x(—1). Furthermore, these functions can be readily evaluated
at all integer values of s < 0. Because of a functional equation (7) that the
Dirichlet L-functions satisfy (discovered by Riemann [17] for ((s)), we can
obtain a relationship between the values of L(s;x) at positive and negative
se’.

Jakob Bernoulli was the first to consider a particular sequence of rational
numbers in the study of finite sums of a given power of consecutive integers
[4]. In this study, he gave a defining relationship that enables the generation
of this sequence. This sequence of numbers has, since that time, come to
be known as the Bernoulli numbers, B,, n € Z, n > 0. They are given by
By=1,By = —-1/2,B, =1/6,B3 = 0,By = —1/30,..., where B, = 0 for
odd n > 3, and for all n > 1,

n—1
1 n—+1
B, = — B,,.
n—i—lz( m >

m=0

The Bernoulli polynomials were first introduced by Raabe in [16]. They can
be expressed in the form

B, (1) = i (;) Bn—mlma

m=0

where n € Z, n > 0. The form in which they are currently defined has been
somewhat modified from Raabe’s original construction, but the results that
he obtained set the framework for a continuing history of analysis on these
polynomials.

The generalized Bernoulli numbers associated with the Dirichlet character
X, Bny, n €Z, n>0, were defined in [12], [3], [1], and [15]. We obtain
the standard Bernoulli numbers when x =1, in that B, ; = B, if n# 1, and

B = —B;. The generalized Bernoulli numbers share a particular relationship
with the Dirichlet L-function, L(s;), in that
1

L(l - I’L;X) = “;Bn,x )

for n € Z, n > 1. The generalized Bernoulli polynomials, B, (), are given
by
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n " )
Bn,x(t) - Z <77Z> Bn——nz,xf] .

m=0
where ne€ Z, n > 0.

During the development of p-adic analysis, effort was made to derive
a meromorphic function, defined over the p-adic number field, that would
interpolate the same, or at least similar, values as the Dirichlet L-function
at nonpositive integers. In [14] Kubota and Leopoldt proved the existence of
such a function, considered the p-adic equivalent of the Dirichlet L-function.
This function, L,(s;x), yields the values

1 e
Lp(l — N, X) — _; (1 - X?Z(p)p 1) B"-Xn :

for neZ, n> 1, where x, = xw ", with w the Teichmiiller character. The
function L,(s;x) can be expressed in the form

a— - n
Ly(s:x) = - _11 + ) an(s — "
n=0

{1—# if x=1

a_1 = P .

0. if x # 1.

and a, € Q,(x), a finite extension of Q,, for n > 0. The power series

given in the above expression converges in ® = {s € C, : |s— 1] < r},

for r = |pl;/(p_”[q§p—1, where ¢ =4 if p =2, and ¢ = p otherwise. Much

additional information about these functions can be found in [19].

We have found a more general form for the p-adic L-function L,(s;X).
Instead of generating a function of one variable that interpolates an expression
involving generalized Bernoulli numbers, we have sought out a function of
two variables that in one variable interpolates an expression-.that involves
generalized Bernoulli polynomials in the other variable, such+that when this
second variable is 0, we obtain the familiar function L,(s;x). We have
constructed such a function for all primes p, and so we have been able
to prove the existence of a p-adic L-function, L,(s.t;x), where s € C, such
that |s — llp < r,except s# 1 when x =1, and r € C, such that ]tlp <1,
which interpolates the polynomials

where

1
Lp(l — A L2 X) — _; (Bn.x,,(qt> o X?z(p)pn_lB"-Xn (p_qu>> ’

for n € Z, n > 1. This function also has an expansion

Lp(S, LX) = a__l(? =+ Zan(f)(s - 1)727

S
n=0
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where .
e ={ 77
0, if x#1.

If x(—=1) = -1, then B, ,, = 0 for each n > 0. Thus the corresponding
p-adic L-function, L,(s;X), vanishes on a set that has a limit point in Z,.
This implies that L,(s; x) must vanish identically for all s € ®. Because of
this, proofs of the existence of this function need only deal with the case of
those x such that x(—1) = 1, and properties associated with these x can
then be utilized to enhance the efficiency of the proof. In the more generalized
form, the p-adic L-function L,(s,t; x) must satisfy L,(s,0;x) = L,(s; x), and
so L,(s,0;x) vanishes for all s € ® when x(—1) = —1, but this property
does not hold for all ¢ for any given x. Thus we cannot focus the proof of
the existence of L,(s,t;x) solely on those x such that y(—1)=1.

In Section 3, we derive L,(s,t; x) according to the method given in [13],
Chapter 3. In this method, if a sequence {b,}>2,, in a finite extension of Q,,
is given such that

C = Z (;) (~1)" " by
m=0

satisfies Icnlp < Cp", for all n > 0, where C,p € R, with C > 0
and 0 < p < IpI;/ =D then a power series A(s) can be generated
such that A(n) = b,, for each n, and such that A(s) converges on
{seC:ls|, < lp];/(p_l)p_l}. It is then shown that, given a Dirichlet
character x, the values b, = (1 — Xn(p)p”_l)Bn,Xn, n > 0, form such a
sequence, and thus we have a power series A, (s) which interpolates the b,
and which converges in the domain ©. The p-adic L-function, L,(s;X), 1is
generated by taking Ly(s;x) = (s — D71A, (1 — ).

In our work we first let 7 be an element of a finite field extension of Q,,
contained in the algebraic closure, Q,, of Q,, with |7]| , < 1. We then define
the sequence {b,(7)}2, by

bu(T) = Bny, (qT) — Xu(P)P" 'Bux, (P"'q7).

The sequence {c,(7)}22, is defined as above, and we prove

PROPOSITION 3.3. For all 7 € C,, IT|p <1, and for n€Z, n >0, we
-1 n
have |ca(T)|, < |pafxl, 14l

At this point it follows that a p-adic power series A,(s,7T) exists, sat-
isfying A, (n,7) = b,(7), and converging in . We can then form the
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p-adic function Ly(s,T;x), satisfying Ly(1 — n,7;x) = —bu(1)/n, by Ealk-
ing Ly(s,75%) = (s — 1)7'A, (1 — s, 7). However, this is only for 7 € Q,,
7|, < 1. In order to prove this for all 7 € Cp, |7], < 1, we derive a means
of defining L,(s, 7;x) for each such 7, and then prove the following:

LEMMA 3.12. Let 7 € Cp, |7|, < 1, and let {7;}%2, be a sequence in
-Qp, with |7',-}p < 1, such that 7; — 7. Then for each n € Z, n > 1,

lim L, (1 — n,7;; %) = Ly(1 — 1,75 %)

[—00

Therefore, as a consequence of this, we deduce

THEOREM 3.13. For each T € C,, with |7'|p < 1, there exists a unique
p-adic, meromorphic function Ly(s,T;X) that satisfies

1
L,(1—-n,7;x)=—- (Bn,xn(qT) - Xn(P)pn_an,Xn (p_qu)) ’
n

for each n € Z, n > 1. Furthermore, this function can be expressed in the
form

Lm0 = T2 4 S g -1y,

- n=0

where the power series converges in the domain ©, and

_ p
a1 {Q if x#1.

Once we have established the existence of L,(s,7;x) for all 7 € C,,
7|, < 1, we proceed to investigate the properties of the two variable function
Ly(s,t;x), where s € ®, s # 1 if x =1, and t € C, with |¢|, < 1. In
Section 4 we derive the following for all primes p:

THEOREM 4.3. Let t€ Cp, [t|, <1, and s €D, except s # 1 if x = 1.
Then L,(s,—t,x) = x(—1)L,(s,t; X).

This property follows from a similar property for the generalized Bernoulli
polynomials. An immediate consequence of this is that L,(s;x) =0 when ¥
is odd. Another property of L,(s,t;x) is given by
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LEMMA 4.6. Let t € Cy, |t|, <1, and s €D, except s# 1 if x =1.
Then

n

0 nf =S
HLo(s:1,X) = nlg (n )Lp (s +n,1Xn)

for neZ, n>0.

Here we are taking

(_S> L,(s +n,t;x)
n

for ne Z, n > 1. Note that this result implies that

1
== (1 —x(pp~") Boy

s=1—n

6p_1 _1 _S
i Lo 500 = (p— D¢’ (p_ 1>Lp (s+p—1,5%).

Because of this lemma we can find a power series expansion of L,(s,#; x) in
the variable ¢ about any a € C,, |a|p <1.

THEOREM 4.7. Let t € Cp, |t|, <1, and s €D, except s # 1 if x = 1.
Then for a € C,, Ialp <1,

o0

Ly(s, ) = ) (;f) q"(t — @)Ly (s + m, & Xn)

m=0

When o = 0, this theorem yields an expansion of L,(s,f;x) in terms of
Ly(s;Xm) for m € Z, and thus yields an additional method of derivation of
L,(s, 2 %).

Let Fy = lem(f,,q), and let F be a positive multiple of pqg Fy. If we
define (a+gt) =w '(a)a+qt) for a€Z, (a,p)=1,and 1 € Cp, |1|, < 1,
where w is the Teichmiiller character, then we have the following:

THEOREM 4.8. Let t € Cy, [t|, <1, and s €D, except s# 1 if x=1.

Then
qF

Ly(s,t+ F;x) — Lp(s, ;%) = — Z xi(@){a+ qt)™".
a=1
(a,p)=1

We then have a connection between certain finite sums and the function
L,(s,t;x). As a result of this, we obtain
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COROLLARY 4.9. Let s €D, except s # 1 if x = 1. Then
qF
Ly(s,F;x) = Lp(si) — Y, xi@{a)™.

a=1
(a,p)=1

Thus, when ¢ takes on certain values, we have a finite expression for L, (s, ; )
in terms of previously known functions.
By combining the previous two theorems, we can obtain the relation

gF oo

— —S mm .
E_:l x1(a){a) S=—; (m)q F™L, (s 15 Xom) »
(a,p)=1

where F is a positive multiple of pg~'Fy, Fy = lem(fy,q), and s € D,
except s # 1 if x = 1. This is a generalization of a result of Barsky found
in [2] (see also [20]).

A number of congruences relating to the ordinary and the generalized
Bernoulli numbers have found a considerable amount of interest. One of the
more notable examples is the Kummer congruence for the ordinary Bernoulli
numbers, which states that p_lAC%B,l € Z,, where ¢ € Z 18 positive with
c =0 (modp—1), and n € Z is positive, even, and n Z 0 (mod p — 1)
(see [19], p. 61). Note that we are using A. to denote the forward difference
operator, A.x, = X1 — X,, SO that

k
k k k—m
Acxn — ’;:O <m> (_'1) Xn+mc-
More generally, it can be shown that p_kAf.%Bn € Z,, where k € Z, with
k> 1, and ¢ and n are as above, but with n > k.

The application of Kummer’s congruence to generalized Bernoulli numbers
was first treated by Carlitz in [5], with the result that p‘kA’j. %Bn)X € Z,[x],
for positive ¢ € Z with ¢ =0 (mod p— 1), n,k € Z with n > k > 1, and
x such that £, # p*, where p € Z, p > 0. From [7] (see also [18]) we see
that if the operator Af is applied to the quantity —(1 — x,(p)p" "B, . /n,
the value of L,(1—n;x), for similar ¢ and characters , then the congruence
will still hold if the restriction n > k is dropped, requiring only that n > 1. In
addition to this, the divisibility requirements on ¢ can be removed, yielding
a congruence of the form

el n_
q "A'é; (1 = xu(P)P"™") Bu, € Z,[xX],
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for ¢,n,k € Z, each positive, and x such that f,, # p*, p € Z, p > 0.
Recall that we are taking g = 4 if p =2, and g = p otherwise. If we denote

1
B === (1= Xxa(P)P"™") Bu,

then this congruence can be expressed as q_kAlgﬂmX € Z,[x].

As an extension of the Kummer congruence, Gunaratne (see [10], [11]) has
shown that if p > 3, ¢,n,k € Z are positive, and x = w", where h € Z and
h #0 (mod p — 1), then the value of p~*Ak3, , modulo pZ, is independent
of n, and further satisfies

p A By = p 7 A By, (mod pZ,)

for positive n', k' € Z with k = kK’ (mod p — 1). Additionally, by means of
the binomial coefficient operator

—1 k—1
Xn = 7 (P~ Ac—)) | xn,
( k L

for these x we have (7 —;AC) Bnx € Zp, with a value modulo pZ, that is
independent of n.

By utilizing Corollary 4.9, we can derive a collection of congruences,
similar to the results of Gunaratne, relating to the generalized Bernoulli
polynomials, but without a restriction on either p or x.

THEOREM 4.10. Let n, c, and k be positive integers, and let 7 € Z,
such that ||, < [pq“lFo lp. Then the quantity q—*A*B, ,(T)— g *A*B, . (0) €
Z,(x], and, modulo qZ,[x], is independent of n.

Here we denote

1 e _
B (D) = =~ (Bux, (@) = Xa(P)P" ™' Bux, (P7'q1)) ,
the value of L,(1 —n,t x). In addition to this result, we have each of the

following :

THEOREM 4.11. Let n, ¢, k, and k' be positive integers with k = k'
(mod p — 1), and let T € Z, such that ||, < ]pq"lFO‘p. Then

g A B, (T) — g AL B, 5 (0)
=g ¥ A B, (1) — g ¥ A¥ B, (0) (mod pZ,[x)).
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THEOREM 4.12. Let n, ¢, and k be positive integers, and let T € Z,
such that |T| < [pq_lFo ‘p. Then the gquantity

_1 —IA
(q kAC> B (T) — (q 2 C) Bnx(0) € Zyl[Xx],

and, modulo qZ,|x], is independent of n.

These results show that if related congruences hold for

1
ﬁn,x(o) - _;’—l (1 - Xn(p)pn_l)Bn,x,, ’

then they must also hold for (,,(r), where 7 is any element of Z, such
that |7, < ‘pq“lFolp.
In [9] Granville defined ordinary Bernoulli numbers of negative index,
B_,, where n € Z, n > 1, in the field Q, according to
B_n = lim B(]ﬁ(pk)—na

k— o0

where the limit is taken in the p-adic sense. In a similar manner we define
generalized Bernoulli numbers of negative index, B_,,, n € Z, n > 1, and
a collection of functions that correspond to generalized Bernoulli polynomials
of negative index, B_, ,(t), n € Z, n > 1. As a result of our definitions, we
show that the B_, () are actually power series that can be written in the

form
—n
By =3 < " >B_n_m,xtm,

m=0

converging for t € C,, It{p < 1. We close out by considering some properties
of these functions.

2. PRELIMINARIES

The p-adic L-functions, L,(s;x), were first generated by Kubota and
Leopoldt for the purpose of finding functions that would serve as analogues
of the Dirichlet L-functions in the p-adic number field [14]. They are char-
acterized by the fact that they interpolate a specific expression involving
generalized Bernoulli numbers when the variable s is a nonpositive integer.
In the following, for each 7 € C,, |7‘|p < 1, we derive a p-adic func-
tion L,(s,7;x) that interpolates a specific expression involving generalized
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