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A p-ADIC L-FUNCTION OF TWO VARIABLES

by Glenn J. FOx™)

ABSTRACT. For p prime and x a primitive Dirichlet character, we derive a p-adic
function L,(s,1; x), where 1 € Cp, [t|, <1, and s € C,, [s—1], < |p|11,/(p—1)|q|p_l,
s#1if x =1, with g=4 if p=2 and g = p if p > 2, that interpolates the values

1 - _
Ly(l=n,t0) = — (Bra(@) = Xn( PP Bra (p™'a1) )

for n € Z, n > 1. Here B, ,(¢) is the n™ generalized Bernoulli polynomial associated
with the character x, and x, = xw™", where w is the Teichmiiller character. This
function is then a two-variable analogue of the p-adic L-function L,(s;Xx), where

s€GC, [s—1], < Iplpl,/(”_l)|q|;l, s # 1 if y = 1, in that this function satisfies

L,(s,0;x) = Ly(s;x). In addition to deriving this function, we establish several
properties and applications of L,(s,;X).

1. INTRODUCTION

Given a primitive Dirichlet character x, having conductor f, (see Section 2
for definitions), the Dirichlet L-function associated with x is defined by

— x(b)
b’

L(s;x) =

b=1
where s € C, R(s) > 1. This function can be continued analytically to the
entire complex plane, except for a simple pole at s = 1 when y = 1, in
which case we have the Riemann zeta function, ((s) = L(s;1). It is believed
that the analysis of Dirichlet L-functions began with Euler’s study of ((s), in
which he considered the function only for real values of s. It was Riemann

‘*) A majority of these results were obtained while the author was a graduate student at the
University of Georgia, Athens, under the direction of Andrew Granville.
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who extended this study to a complex variable [17]. Of notable interest are
the values of L(s;x) at s = n, n € Z. Euler was able to evaluate ((s)
at the positive even integers. However, the determination of the values of
this function at odd s > 3 remains an open problem. Similarly, the values of
L(s;x) can be determined at either the positive even or odd integers depending
on the sign of x(—1). Furthermore, these functions can be readily evaluated
at all integer values of s < 0. Because of a functional equation (7) that the
Dirichlet L-functions satisfy (discovered by Riemann [17] for ((s)), we can
obtain a relationship between the values of L(s;x) at positive and negative
se’.

Jakob Bernoulli was the first to consider a particular sequence of rational
numbers in the study of finite sums of a given power of consecutive integers
[4]. In this study, he gave a defining relationship that enables the generation
of this sequence. This sequence of numbers has, since that time, come to
be known as the Bernoulli numbers, B,, n € Z, n > 0. They are given by
By=1,By = —-1/2,B, =1/6,B3 = 0,By = —1/30,..., where B, = 0 for
odd n > 3, and for all n > 1,

n—1
1 n—+1
B, = — B,,.
n—i—lz( m >

m=0

The Bernoulli polynomials were first introduced by Raabe in [16]. They can
be expressed in the form

B, (1) = i (;) Bn—mlma

m=0

where n € Z, n > 0. The form in which they are currently defined has been
somewhat modified from Raabe’s original construction, but the results that
he obtained set the framework for a continuing history of analysis on these
polynomials.

The generalized Bernoulli numbers associated with the Dirichlet character
X, Bny, n €Z, n>0, were defined in [12], [3], [1], and [15]. We obtain
the standard Bernoulli numbers when x =1, in that B, ; = B, if n# 1, and

B = —B;. The generalized Bernoulli numbers share a particular relationship
with the Dirichlet L-function, L(s;), in that
1

L(l - I’L;X) = “;Bn,x )

for n € Z, n > 1. The generalized Bernoulli polynomials, B, (), are given
by
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n " )
Bn,x(t) - Z <77Z> Bn——nz,xf] .

m=0
where ne€ Z, n > 0.

During the development of p-adic analysis, effort was made to derive
a meromorphic function, defined over the p-adic number field, that would
interpolate the same, or at least similar, values as the Dirichlet L-function
at nonpositive integers. In [14] Kubota and Leopoldt proved the existence of
such a function, considered the p-adic equivalent of the Dirichlet L-function.
This function, L,(s;x), yields the values

1 e
Lp(l — N, X) — _; (1 - X?Z(p)p 1) B"-Xn :

for neZ, n> 1, where x, = xw ", with w the Teichmiiller character. The
function L,(s;x) can be expressed in the form

a— - n
Ly(s:x) = - _11 + ) an(s — "
n=0

{1—# if x=1

a_1 = P .

0. if x # 1.

and a, € Q,(x), a finite extension of Q,, for n > 0. The power series

given in the above expression converges in ® = {s € C, : |s— 1] < r},

for r = |pl;/(p_”[q§p—1, where ¢ =4 if p =2, and ¢ = p otherwise. Much

additional information about these functions can be found in [19].

We have found a more general form for the p-adic L-function L,(s;X).
Instead of generating a function of one variable that interpolates an expression
involving generalized Bernoulli numbers, we have sought out a function of
two variables that in one variable interpolates an expression-.that involves
generalized Bernoulli polynomials in the other variable, such+that when this
second variable is 0, we obtain the familiar function L,(s;x). We have
constructed such a function for all primes p, and so we have been able
to prove the existence of a p-adic L-function, L,(s.t;x), where s € C, such
that |s — llp < r,except s# 1 when x =1, and r € C, such that ]tlp <1,
which interpolates the polynomials

where

1
Lp(l — A L2 X) — _; (Bn.x,,(qt> o X?z(p)pn_lB"-Xn (p_qu>> ’

for n € Z, n > 1. This function also has an expansion

Lp(S, LX) = a__l(? =+ Zan(f)(s - 1)727

S
n=0
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where .
e ={ 77
0, if x#1.

If x(—=1) = -1, then B, ,, = 0 for each n > 0. Thus the corresponding
p-adic L-function, L,(s;X), vanishes on a set that has a limit point in Z,.
This implies that L,(s; x) must vanish identically for all s € ®. Because of
this, proofs of the existence of this function need only deal with the case of
those x such that x(—1) = 1, and properties associated with these x can
then be utilized to enhance the efficiency of the proof. In the more generalized
form, the p-adic L-function L,(s,t; x) must satisfy L,(s,0;x) = L,(s; x), and
so L,(s,0;x) vanishes for all s € ® when x(—1) = —1, but this property
does not hold for all ¢ for any given x. Thus we cannot focus the proof of
the existence of L,(s,t;x) solely on those x such that y(—1)=1.

In Section 3, we derive L,(s,t; x) according to the method given in [13],
Chapter 3. In this method, if a sequence {b,}>2,, in a finite extension of Q,,
is given such that

C = Z (;) (~1)" " by
m=0

satisfies Icnlp < Cp", for all n > 0, where C,p € R, with C > 0
and 0 < p < IpI;/ =D then a power series A(s) can be generated
such that A(n) = b,, for each n, and such that A(s) converges on
{seC:ls|, < lp];/(p_l)p_l}. It is then shown that, given a Dirichlet
character x, the values b, = (1 — Xn(p)p”_l)Bn,Xn, n > 0, form such a
sequence, and thus we have a power series A, (s) which interpolates the b,
and which converges in the domain ©. The p-adic L-function, L,(s;X), 1is
generated by taking Ly(s;x) = (s — D71A, (1 — ).

In our work we first let 7 be an element of a finite field extension of Q,,
contained in the algebraic closure, Q,, of Q,, with |7]| , < 1. We then define
the sequence {b,(7)}2, by

bu(T) = Bny, (qT) — Xu(P)P" 'Bux, (P"'q7).

The sequence {c,(7)}22, is defined as above, and we prove

PROPOSITION 3.3. For all 7 € C,, IT|p <1, and for n€Z, n >0, we
-1 n
have |ca(T)|, < |pafxl, 14l

At this point it follows that a p-adic power series A,(s,7T) exists, sat-
isfying A, (n,7) = b,(7), and converging in . We can then form the




A p-ADIC L-FUNCTION OF TWO VARIABLES 229

p-adic function Ly(s,T;x), satisfying Ly(1 — n,7;x) = —bu(1)/n, by Ealk-
ing Ly(s,75%) = (s — 1)7'A, (1 — s, 7). However, this is only for 7 € Q,,
7|, < 1. In order to prove this for all 7 € Cp, |7], < 1, we derive a means
of defining L,(s, 7;x) for each such 7, and then prove the following:

LEMMA 3.12. Let 7 € Cp, |7|, < 1, and let {7;}%2, be a sequence in
-Qp, with |7',-}p < 1, such that 7; — 7. Then for each n € Z, n > 1,

lim L, (1 — n,7;; %) = Ly(1 — 1,75 %)

[—00

Therefore, as a consequence of this, we deduce

THEOREM 3.13. For each T € C,, with |7'|p < 1, there exists a unique
p-adic, meromorphic function Ly(s,T;X) that satisfies

1
L,(1—-n,7;x)=—- (Bn,xn(qT) - Xn(P)pn_an,Xn (p_qu)) ’
n

for each n € Z, n > 1. Furthermore, this function can be expressed in the
form

Lm0 = T2 4 S g -1y,

- n=0

where the power series converges in the domain ©, and

_ p
a1 {Q if x#1.

Once we have established the existence of L,(s,7;x) for all 7 € C,,
7|, < 1, we proceed to investigate the properties of the two variable function
Ly(s,t;x), where s € ®, s # 1 if x =1, and t € C, with |¢|, < 1. In
Section 4 we derive the following for all primes p:

THEOREM 4.3. Let t€ Cp, [t|, <1, and s €D, except s # 1 if x = 1.
Then L,(s,—t,x) = x(—1)L,(s,t; X).

This property follows from a similar property for the generalized Bernoulli
polynomials. An immediate consequence of this is that L,(s;x) =0 when ¥
is odd. Another property of L,(s,t;x) is given by
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LEMMA 4.6. Let t € Cy, |t|, <1, and s €D, except s# 1 if x =1.
Then

n

0 nf =S
HLo(s:1,X) = nlg (n )Lp (s +n,1Xn)

for neZ, n>0.

Here we are taking

(_S> L,(s +n,t;x)
n

for ne Z, n > 1. Note that this result implies that

1
== (1 —x(pp~") Boy

s=1—n

6p_1 _1 _S
i Lo 500 = (p— D¢’ (p_ 1>Lp (s+p—1,5%).

Because of this lemma we can find a power series expansion of L,(s,#; x) in
the variable ¢ about any a € C,, |a|p <1.

THEOREM 4.7. Let t € Cp, |t|, <1, and s €D, except s # 1 if x = 1.
Then for a € C,, Ialp <1,

o0

Ly(s, ) = ) (;f) q"(t — @)Ly (s + m, & Xn)

m=0

When o = 0, this theorem yields an expansion of L,(s,f;x) in terms of
Ly(s;Xm) for m € Z, and thus yields an additional method of derivation of
L,(s, 2 %).

Let Fy = lem(f,,q), and let F be a positive multiple of pqg Fy. If we
define (a+gt) =w '(a)a+qt) for a€Z, (a,p)=1,and 1 € Cp, |1|, < 1,
where w is the Teichmiiller character, then we have the following:

THEOREM 4.8. Let t € Cy, [t|, <1, and s €D, except s# 1 if x=1.

Then
qF

Ly(s,t+ F;x) — Lp(s, ;%) = — Z xi(@){a+ qt)™".
a=1
(a,p)=1

We then have a connection between certain finite sums and the function
L,(s,t;x). As a result of this, we obtain
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COROLLARY 4.9. Let s €D, except s # 1 if x = 1. Then
qF
Ly(s,F;x) = Lp(si) — Y, xi@{a)™.

a=1
(a,p)=1

Thus, when ¢ takes on certain values, we have a finite expression for L, (s, ; )
in terms of previously known functions.
By combining the previous two theorems, we can obtain the relation

gF oo

— —S mm .
E_:l x1(a){a) S=—; (m)q F™L, (s 15 Xom) »
(a,p)=1

where F is a positive multiple of pg~'Fy, Fy = lem(fy,q), and s € D,
except s # 1 if x = 1. This is a generalization of a result of Barsky found
in [2] (see also [20]).

A number of congruences relating to the ordinary and the generalized
Bernoulli numbers have found a considerable amount of interest. One of the
more notable examples is the Kummer congruence for the ordinary Bernoulli
numbers, which states that p_lAC%B,l € Z,, where ¢ € Z 18 positive with
c =0 (modp—1), and n € Z is positive, even, and n Z 0 (mod p — 1)
(see [19], p. 61). Note that we are using A. to denote the forward difference
operator, A.x, = X1 — X,, SO that

k
k k k—m
Acxn — ’;:O <m> (_'1) Xn+mc-
More generally, it can be shown that p_kAf.%Bn € Z,, where k € Z, with
k> 1, and ¢ and n are as above, but with n > k.

The application of Kummer’s congruence to generalized Bernoulli numbers
was first treated by Carlitz in [5], with the result that p‘kA’j. %Bn)X € Z,[x],
for positive ¢ € Z with ¢ =0 (mod p— 1), n,k € Z with n > k > 1, and
x such that £, # p*, where p € Z, p > 0. From [7] (see also [18]) we see
that if the operator Af is applied to the quantity —(1 — x,(p)p" "B, . /n,
the value of L,(1—n;x), for similar ¢ and characters , then the congruence
will still hold if the restriction n > k is dropped, requiring only that n > 1. In
addition to this, the divisibility requirements on ¢ can be removed, yielding
a congruence of the form

el n_
q "A'é; (1 = xu(P)P"™") Bu, € Z,[xX],
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for ¢,n,k € Z, each positive, and x such that f,, # p*, p € Z, p > 0.
Recall that we are taking g = 4 if p =2, and g = p otherwise. If we denote

1
B === (1= Xxa(P)P"™") Bu,

then this congruence can be expressed as q_kAlgﬂmX € Z,[x].

As an extension of the Kummer congruence, Gunaratne (see [10], [11]) has
shown that if p > 3, ¢,n,k € Z are positive, and x = w", where h € Z and
h #0 (mod p — 1), then the value of p~*Ak3, , modulo pZ, is independent
of n, and further satisfies

p A By = p 7 A By, (mod pZ,)

for positive n', k' € Z with k = kK’ (mod p — 1). Additionally, by means of
the binomial coefficient operator

—1 k—1
Xn = 7 (P~ Ac—)) | xn,
( k L

for these x we have (7 —;AC) Bnx € Zp, with a value modulo pZ, that is
independent of n.

By utilizing Corollary 4.9, we can derive a collection of congruences,
similar to the results of Gunaratne, relating to the generalized Bernoulli
polynomials, but without a restriction on either p or x.

THEOREM 4.10. Let n, c, and k be positive integers, and let 7 € Z,
such that ||, < [pq“lFo lp. Then the quantity q—*A*B, ,(T)— g *A*B, . (0) €
Z,(x], and, modulo qZ,[x], is independent of n.

Here we denote

1 e _
B (D) = =~ (Bux, (@) = Xa(P)P" ™' Bux, (P7'q1)) ,
the value of L,(1 —n,t x). In addition to this result, we have each of the

following :

THEOREM 4.11. Let n, ¢, k, and k' be positive integers with k = k'
(mod p — 1), and let T € Z, such that ||, < ]pq"lFO‘p. Then

g A B, (T) — g AL B, 5 (0)
=g ¥ A B, (1) — g ¥ A¥ B, (0) (mod pZ,[x)).
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THEOREM 4.12. Let n, ¢, and k be positive integers, and let T € Z,
such that |T| < [pq_lFo ‘p. Then the gquantity

_1 —IA
(q kAC> B (T) — (q 2 C) Bnx(0) € Zyl[Xx],

and, modulo qZ,|x], is independent of n.

These results show that if related congruences hold for

1
ﬁn,x(o) - _;’—l (1 - Xn(p)pn_l)Bn,x,, ’

then they must also hold for (,,(r), where 7 is any element of Z, such
that |7, < ‘pq“lFolp.
In [9] Granville defined ordinary Bernoulli numbers of negative index,
B_,, where n € Z, n > 1, in the field Q, according to
B_n = lim B(]ﬁ(pk)—na

k— o0

where the limit is taken in the p-adic sense. In a similar manner we define
generalized Bernoulli numbers of negative index, B_,,, n € Z, n > 1, and
a collection of functions that correspond to generalized Bernoulli polynomials
of negative index, B_, ,(t), n € Z, n > 1. As a result of our definitions, we
show that the B_, () are actually power series that can be written in the

form
—n
By =3 < " >B_n_m,xtm,

m=0

converging for t € C,, It{p < 1. We close out by considering some properties
of these functions.

2. PRELIMINARIES

The p-adic L-functions, L,(s;x), were first generated by Kubota and
Leopoldt for the purpose of finding functions that would serve as analogues
of the Dirichlet L-functions in the p-adic number field [14]. They are char-
acterized by the fact that they interpolate a specific expression involving
generalized Bernoulli numbers when the variable s is a nonpositive integer.
In the following, for each 7 € C,, |7‘|p < 1, we derive a p-adic func-
tion L,(s,7;x) that interpolates a specific expression involving generalized
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Bernoulli polynomials in 7 for similar values of the variable s. These func-
tions are designed so that L,(s,0;%) = L,(s;x). The method of derivation
follows that found in [13], Chapter 3. However, this method will only account
for those 7 € Q, with 7|, < 1. To complete the derivation we show that
there exist functions L,(s,7;x) for all 7€ C,, |7| , <1, such that for every
sequence {7;}%, in Q,, with | |, < 1, converging to some 7 € C,, the se-
quence {L,(1—n,7;x)}2,, with n € Z, n > 1, converges to L,(1 —n,T;x).
Thus for each 7 € C,, ]Tlp < 1, the function L,(s,7;x) must interpolate
the appropriate expressions involving generalized Bernoulli polynomials for
s=1—-n,neZ, n>1.

Before we begin the derivation, we must first define the concepts that we
shall need and review some of their resulting properties.

2.1 DIRICHLET CHARACTERS

For n € Z, n > 1, a Dirichlet character to the modulus » is a multiplicative
map x : Z — C such that x(a+n) = x(a) for all a € Z, and x(a) = 0 if and
only if (a,n) # 1. Since a®™ =1 (mod n) for all a such that (a,n) = 1,
x(a) must be a root of unity for such a.

If x is a Dirichlet character to the modulus #, then for any positive
multiple m of n we can induce a Dirichlet character 1/ to the modulus m
according to

x(@), if (a,m) =1

via) = { 0, if (a,m) # 1.

The minimum modulus n for which a character y cannot be induced from
some character to the modulus m, m < n, is called the conductor of y,
denoted f, . We shall assume that each x is defined modulo its conductor.
Such a character is said to be primitive.

For primitive Dirichlet characters x and 1) having conductors f, and fy,
respectively, we define the product, x7y, to be the primitive character with
x¥(a) = x(a)y(a) for all a € Z such that (a,f, fy) = 1. Note that there
may exist some values of a such that xi(a) # x(a)y(a), due to the fact that
our definition requires %) to be a primitive character. The conductor f,.,
then divides lem(f,,fy). With this operation defined, we can then consider
the set of primitive Dirichlet characters to form a group under multiplication.
The identity of the group is the principal character x = 1, having conductor
fi = 1. The inverse of the character x is the character ™' =, the map of
complex conjugates of the values of x.
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Since any Dirichlet character x is multiplicative, we must have x(—1) = *1.
A character x is said to be odd if x(—1) = —1, and even if x(—1) = 1.

72  GENERALIZED BERNOULLI POLYNOMIALS

Let x be a Dirichlet character with conductor f. Then we define the
functions, B, (), n € Z, n > 0, by the generating function

efx* — 1 X

y(@)xe@t* — x" 27
(1) Z - ZBH’X(Z‘)E!_7 ‘xl < =
n=0

We define the generalized Bernoulli numbers associated with x, By, n € Z,
n >0, by

Ix . 00
x(a)xe™ x" 27r
Zefxx—l -ZBn,xav lxl <z

a=1 n=>0 X
so that B, ,(0) = B, . Note that

Z X(a)xe(a—}—l‘)k erxfi y(@)xe™
eixr—1

which implies that

o0

x"
5 Bn,xg) __erxg Bn,xﬁ—‘a
n=0 n=0 '

and from this we obtain

(2) Bn,x(t) = Z <::L> Bﬂ-m,xfm .

m=0

Thus the functions B, ,(¢), defined in (1), are actually polynomials, called
the generalized Bernoulli polynomials associated with x. Let Z[x] denote
the ring generated over Z by all the values x(a), a € Z, and Q(x) the field
generated over Q by all such values. Then it can be shown that f, B, , must
be in Z[x] for each n > 0 whenever x # 1. In general, we have B, , € Q(x)

for each n > 0, and so B, (1) € Q()[t]. The polynomials B, () exhibit
the property that, for all » > 0,

(3) Bn,x(_t) — (_1)nX(_l)Bn,x(t)7

whenever x # 1. Thus B, ,(f), for x # 1, is either an even function or an
odd function according to whether (—1)"x(—1) is 1 or —1. From (3) we
obtain
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Bn,x = (—l)nX(_l)Bn,x )

and so B,, = 0 whenever n is even and x is odd, or whenever n is odd
and x 1is even, x # 1. Another property that the polynomials satisfy is that
for meZ, m>1,

mfy

4) Bux(mfy +1) = Buy () =1 x(@)a+"",

a=1

for all n > 0. This can be derived from (1). Note that for y =1 and r =0
this becomes

1
- Bn,l(m) _Bn,l) = an—l.
~

If x # 1, then it can be shown that Z{,X:l x(a) = 0, and from the above
relations we can derive

1
Box =+ »_ X
X a=1
for all y. Therefore
0, if x#1
BO,X = { )
I, if x=1.

The ordinary Bernoulli polynomials, B,(t), n € Z, n > 0, are defined by

xe

)

e —

tx o X"
o= Bu0—, |xl <2m,
n=0

and the Bernoulli numbers, B,, n € Z, n > 0,
(oo
X x"
o 1 — ;Bn;’z—!) I.Xl < 2.

From this we obtain the values By = 1, By = —1/2, B, = 1/6,
By = —1/30,..., with B, = 0 for odd n > 3. For even n > 2, we
have 1

1 <= /n+1
B = — By .
" n—}—lr;)( m )

Note that we again have the relations B,(0) = B, and

B,(t) = Zn: (;)Bn—-mlma

m=0

as we did for the generalized Bernoulli polynomials.



A p-ADIC L-FUNCTION OF TWO VARIABLES 237

Some of the more important properties of Bernoulli polynomials are that
(©6) B,(t+ 1) — By(t) = nt"™!

for all n > 1, and
B,(1 — 1) = (—1)"B,(?)

for n > 0. Each of these results can be derived from the generating function
(5) above. '

Similar to (4) for the generalized Bernoulli polynomials, whenever
mn € L, m>1,n>1,

m—1
1 —1
- Bn — Bn = " s
- (Bn(m) ) ;:O a

where we take 0° to be 1 in the case of a = 0 and n = 1. Note that this
can be derived from (6) since

m—1

Bu(m) =B, =Y (Bu(a+1) — B(a)) .

a=0

The Bernoulli numbers are rational numbers, and, in fact, the von Staudt-
Clausen theorem states that for even n > 2,

B+Z—-€Z

prlme
(p—D)n

Thus the denominator of each B, must be square-free.

The ordinary Bernoulli numbers are related to the generalized Bernoulli
numbers in that for y =1 we have

o0

Z ——' |x\ < 2,

n=0

and since

xe* I X
c—1 T a1

we see that B, = B, for all n # 1, and Bi1 = —B;. In fact, this can be
written as B, ; = (—1)"B,, and for the polynomials, B, 1(t) = (—=1)"B,(—1).
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2.3  DIRICHLET L-FUNCTIONS

For x a Dirichlet character with conductor f,, the Dirichlet L-function
for x is defined by

2 x(b
Lis;x) = ) XIES)’
b=1

for s € C such that R(s) > 1. Note that L(s;x) can be continued analytically
to all of C, except for a pole of order 1 at s =1 when y = 1.

Let 7(x) be a Gauss sum,

fx
00 = Y x(@e*™

a=1]
where > = —1, and let

{Q if v(—1) =1
by = ,
1, if x(—=1)= —1.

Then L(s;x) satisfies the functional equation

5/2 (1—5)/2 .
% (’3—) F(SJ;‘SX)L(s;x):WX(%) r(lﬂﬁ(l—s;@,

i 2

where T'(s) is the gamma function, and W, = —~%)_  having the propert
L‘SX-\/E property

that |W, | = 1. Since I'(s) has simple poles at the negative integers, L(s;x)
must be zero for s =1 —n, where n € Z, n > 1, such that n # 4, (mod 2),
except when y =1 and n = 1. L(s;x) can also be described by means of
the Buler product L(s;x) = [T, prime (1 — X( p)p_s)_1 , for s € C such that
R(s) > 1. Thus L(s;x) # 0 in this domain.

The generalized Bernoulli numbers, B, ., and the Dirichlet L-function,
L(s; x), share the following relationship, a proof of this being found in [13]:

THEOREM 2.1. Let x be a Dirichlet character, and let n € 2., n > 1.
Then L(1 —n;y) = —%Bn,x.
Thus we have a way to express certain values of a function defined in terms
of an infinite sum as quantities that can be found by a finite process.
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2.4 THE p-ADIC NUMBER FIELD

Let p be prime. We shall use Z, to represent the p-adic integers, and
Q, the p-adic rationals. Let Hp denote the p-adic absolute value on Q,,
normalized so that |p|, = p~'. Let Q, be the algebraic closure of Q,. The
absolute value on Q, extends uniquely to Q,, however Gp is not complete
with respect to the absolute value. Let C, be the completion of Q—p with
respect to this absolute value. Then the absolute value extends to C,, and Gp
is dense in C,. We also have C, algebraically closed. Furthermore, on C,
the absolute value is non-Archimedean, and so

@+ b|, < max{|a],, |b],}

for any a,b € C,. Note that the two fields C and C, are algebraically
isomorphic, and any one of the two can be embedded in the other. We denote
two particular subrings of C, in the following manner

0 ={a€C,:lal, <1}, p={acCp:lal, <1}

Then p is a maximal ideal of o. If 7 € C, such that |7|, < |p| , where
s € Q, then 7 € po, and so we shall also write this as 7 = 0 (mod p’o).

Any n € Z, n > 0, can be uniquely expressed in the form n = anzo amp™,
where a, € Z, 0 <a, <p—1, for m=0,1,...,k, and a; # 0. For such
n, we define

the sum of the p-adic digits of n, and also define $,(0) = 0. For any n € Z,
let v,(n) be the highest power of p dividing n. This function is additive, and
relates to the function s,(n) by means of the identity

n—s,(n)
8 )= PV~
®) v = ==,
which holds for all » > 0. Note that for n > 1 this implies that
n—1
N < )
%M)_p_l

The definition of this function can be extended to all of Q by taking
vp(1/n) = —uy(n).

Throughout we let g =4 if p=2, and g = p otherwise. Note that there
exist ¢(g) distinct solutions, modulo g, to the equation x*@ —1 = 0, and each
solution must be congruent to one of the values a Z, where 1 < a <gq,
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(a,p) = 1. Thus, by Hensel’s Lemma, given a € Z with (a,p) = 1, there
exists a unique w(a) € Z,, where w(a)®?? = 1, such that

w(a) = a (mod gZ,).

Letting w(a) =0 for a € Z such that (a,p) # 1, we see that w is actually a
Dirichlet character, called the Teichmiiller character, having conductor f,, = g.
Let us define

(a) = w N a)a.

Then (a) = 1 (mod gZ,). For p > 3, lim,_ @’ = w(a), since
" =a (mod p) and & ?~V =1 (mod p"*t?).

For our purposes we shall need to make a slight extension of the definition
of the Teichmiiller character w. If ¢ € C, such that |¢|, <1, then for any
acZ, a+ gt =a (mod go). Thus we define

w(a + gt) = w(a)
for these values of ¢. We also define
(a+qt) = w™ (@)@ + q1)

for such t.

Fix an embedding of the algebraic closure of Q, Q, into C,. We may
then consider the values of a Dirichlet character x as lying in C,. For n € Z
we define the product x, = xyw™" in the sense of the product of characters.
This implies that f,, | f,q. However, since we can write x = x,w", we also
have f, | fx,q.- Thus f, and f,, differ by a factor that is a power of p. In
fact, either f,,/f,, € Z and divides ¢, or f, /f,, € Z and divides gq.

Let Q,(x) denote the field generated over Q, by all values x(a), a € Z.
In this context we can state the following, found in [13] (pp. 14-15).

LEMMA 2.2. In the field Qy(x), for all n€ Z, n >0,

1 1
Hm —— (But1 (P"fx) — Brt1,x(0)) -

B, =
e n+1hnr-00 phfx

From this we can obtain
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LEMMA 2.3. Let 7 € C,. In the field Q,(x,T), forall nel, n=>0,

pfx

Bny, (1) = lim —— Z ya(@)a+7)".

h—oo hfx

Proof. By applying Lemma 2.2 to (4), we obtain

thx
B,, = lim —— Z x(a)a"
h—o0 p X =1
Therefore, by (2),
n 7 1 thxn
B =3 (1) tim > e
1 phfx,, n "
= lim Xn(a@) ( )T"_ma’"
i i 2 0@,

Since f, and f,, differ by a factor that is a power of p, we must have

Pfx

1
Br(T) = Jim Z Xn(@)(a+ )",
X 4

and the proof is complete. [

2.5 p-ADIC FUNCTIONS

Let K be an extension of Q, contained in C,. An infinite series >, a,,
a, € K, converges in K if and only if lanlp — 0 as n — oco. Let K[[x]] be
the algebra of formal power series in x. Then it follows that a power series

Alx) = i apx"
n=0

in K[[x]], converges at x =&, £ € C,, if and only if |an§”|p — 0 as n — 00.
Therefore whenever a power series A(x) converges at some &, € C,, then it

must converge at all £ € C, such that |£]) < [ Ip. The following result, for
double series in K, can be found in [8].

kl.____“ S
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PROPOSITION 2.4. Let b, € K, and suppose that for each € > 0 there
exists N € Z, depending on ¢, such that if max{n,m} > N, then |b, [p <e.
Then both series

Z(anm> and Z(me>

n=0 m=0 \n=0

converge, and their sums are equal.

There are two power series that we wish to make note of in particular.
First we define the p-adic exponential function, exp(x), in Q,[[x]], by

1
©) exp(r) = ) —"
n=0

From (8) we can conclude that this power series converges in {x € C,
x|, < p~Y/P=D}  The p-adic logarithm function, log(x), in Q,[[x]], is
defined by

o0 (_1)n—1
(10) log(1+x) =Y —
n=1

the power series converging in the domain {x € C, : |x|, < 1}. For
x|, < p~ /(=1 we have log(exp(x)) = x and exp(log(l +x)) = 1 + x.

The following property is a uniqueness property for power series, found
in [13].

LEMMA 2.5. Let A(x),B(x) € Kl[[x]l, such that each converges in a
neighborhood of 0 in C,. If A(&,) = B(&,) for a sequence {£,152,, &, # 0,
in C,, such that- &, — 0, then A(x) = B(x).

Let U be an open subset of C,, contained in the domain of the p-adic
function f. We say that f is differentiable at x € U if the limit

P — fim TEEP =@

h—0 h

exists. If this limit exists for each x € U, then we say that f is differentiable
in U.

The relationship between the derivatives of a function and its power series
expansion is given in the following result, found in [8].
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PROPOSITION 2.6. Let S.°0 a,x" be a power series with coefficients in
C,, and suppose that

oo

fo) =) anlx— o)’

n=0

converges on some closed ball B in C,. Then
i) For each x € B, the k™" derivative f®(x) exists, and is given by

FO@ =k (Z) an(x — )",

n=k

and we have

1
ay = ‘k—!f(k)(a) -

ii) Let 3 € B. Then there exists a series y o bnX" such that
f) =Y bux— B’
n=>0

for any x € B. Both series Z,(:O:o a,x" and Z;io b,x" have the same region
of convergence.

Now let K be a finite extension of Q,. For A(x) € K[[x]], A(x) =
> o anx", where a, € K, define

|A]l = sup |an‘p ~

Let Px = {A(x) € K[[x]] : ||A|| < co}. Then ||-|| defines a norm on Py, and
so K[x] C Px C K[[x]]. Furthermore Py is complete in this norm.

Let {b,},2, be a sequence of elements of K, and let the sequence {c,}>2,
be defined by

(11) =Y (Z)(—l)"—'"bm

m=0

for each n € Z, n > 0. Then ¢, € K for each n > 0. Note that (11) implies
that these sequences must satisfy

oo 1

o0 Z‘n
_ —r
E Ch— = ¢€ b, — .
n!

|
n=0 n=0 n
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This implies that

00 o0
3 r" » "
bn—? =€ Cn——',
n! n
n=0 n=0

and so we have the relationship

(12) b, = Z (:2) C

m=0
for each n € Z, n > 0. We can reverse this process to derive (11) given (12).
Thus (11) and (12) must be equivalent. The following relate to sequences that
satisfy (11) and (12), and are found in [13].

THEOREM 2.7. Let {b,}2, and {c,}2, be defined as in the above
relation. Let p € R such that 0 < p < |p|;/(p_1). If |enl, < Cp" for all
n > 0, where C > 0, then there exists a unique power series A(x) € Pg
such that A(x) converges at every £ € C, with |{|, < }pl;/(pal)p_l, and

A(n) = b, for every n > 0.

COROLLARY 2.8. Let A(x) be the power series from the theorem. Then
for each ¢ € C, such that |£], < |p|[1)/(p—l)p”1, we have

A@y=§:%<i)

n=0

Theorem 2.7 can be applied to the sequence {b,}.2, in K = Q,(x),
where
by = (1= Xa(P)P"™") Bux,
in order to obtain a power series A, (s) satisfying A, (n) = b,, and converging
on the domain {s € C, : [s|, < lp];/(p_l)lqlp_l}. (Since lplé/“p_l)|q|[;1 > 1
and |n]p < 1 for each n € Z, all of Z is contained in this domain.) From
this a p-adic function, L,(s;X), can be derived that interpolates the values

1
LA —nmx)=——bu,

and which converges in {s € C, : [s — 1], < Ipl;/(p_1)|q{p_1}, except s # 1 if
x = 1. Note that if x is odd, then Y, is even when 7 is odd, and X, is odd
when 7 is even. Thus the quantity (1 — x,( p)p"“l)B,z,Xn =0 forall neZ,
n > 1, as we saw from the properties of generalized Bernoulli numbers.
Therefore L,(s;x) vanishes on a sequence such as {—p™}°2 ,, which has 0

as a limit point, implying that for such x we must have L,(s;x) = 0.
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3. THE p-ADIC L-FUNCTION L,(s,;Xx)

In the following, we apply Theorem 2.7 to the sequence {bu(17)}22,,
where b,(T) = By, (@T) — Xu(P)P" By, (p"lq'r), for 7€ Q,, |7|, <1,
to show that there exists a power series A,(s,7) € K;[[s]], K; = Q,(x,7),
which converges on {s € C, : |s|, < |p|;/(p_l)[q|p_1}. From this we can
prove the existence of a p-adic function, L,(s,7;X), that interpolates the
values L,(1 —n,7;X) = —ib,(r) for n € Z, n > 1, and converges in
{seC:ls—1], < |p|;/(p—l)lq|p—l}, except s £ 1 if x = 1. After this we
will show that there exists L,(s,7;x) for each 7 € C,, T'p < 1, satisfying

1
L,(1—-n,7;x)= —;bn(’f%

and converging in the domain above.

3.1 Ly(s,m;%) FOR T € Q,,

Tlp<1

Let p be prime, and let x be a Dirichlet character with conductor f, . Let
reQ, [Tlp <1, and let K, = Q,(x,7), the field generated over Q, by
adjoining 7 and the values x(a), a € Z. Since 7 and each of the x(a) are
in ﬁp, we see that K is a finite extension of Q, in Gp. For each 7 € Q,,
7], < 1, we shall derive our L-function L,(s,7;X) in a manner similar to
that given for the derivation of L,(s;x) found in Chapter 3 of [13].

For 7 € Q,, |7|, <1, define the sequences {b,(7)}52, and {ca(1)}2,
in K, according to

bu(T) = Bux,(aT) — Xu(P)P" 'Bo, (p7'q7)

and
n

cn(T) = Z <:’l> (_1)n~mbm(7-) .

m=0
In order to derive our L-function L,(s,T;X), we will prove a particular bound
on the magnitude of ¢,(7), but to do so, we shall need the following:

LEMMA 3.1. Let m,r € Z, with m >0 and r > 1. Then

—1
Y @"=0 (modpY,
=0

where we take 0° =1 in the case of a=0 and m = 0.

e T S S
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~Proof.  This is obvious for m = 0, so assume that m > 1. We shall
prove this result for the remaining values of m by induction on r.
Since any sum of elements of Z must also be in Z, the lemma is true
for r = 1. Now assume that the lemma holds for some r € Z, r > 1. By
rewriting the sum

pi—1 —1p —1
2 S )"
v=0 u=0

and reducing this modulo p", we obtain

ptiaa p—1p—1
Z m“zz (mod p")
v=0 u=0

=p Z u™ (mod p").

u=0
By our induction hypothesis we must then have
r—f—l__l

> a"=0 (mod p"),

a=0

p

and the lemma follows. L]

LEMMA 3.2. Let T € C,, |’I'lp <1,andlet ncZ, n>0. Forall h€ Z,
h>1,

q'fx
LS @ (la+qr)—1)" =0 (mod £ 'p~'g" o).
Qfx a=1

(a,p)=1

Proof. This is obvious for n = 0 since writing

thx thx P—lthx

Y x@=> x@— Y x(pa)
a=1 a=1 a=1

(a,p)=1

allows us to derive

h
q}i}’i @ = {p‘lqh(p -1, if x=1
X 0, if £ 1.

a=1
(a,p)=1

So let us assume that n > 1.
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Let A= 1. Then (a+gr) =1 (mod go) for all a € Z such that (a,p) = 1
implies that
({a+gr) —1)" =0 (mod ¢"0),

and the lemma holds for this case.
Now assume that 4 > 1. We can rewrite our sum as follows:

thx h Ly

> x@(a+qr) - Z Z x(uFvaf)(utvaf+4r)=1)".
a=1 i

(a,p)=1 (u+vqfx,P) 1

Since |7|, <1, we can write
(u+vgfy +qr) = (u + vgfy + qT) T (u + vgfy, + QT)

=+ gr)w (u+gr) +vafyw™ (u+ gr)
= (u+qr) + vqfxw_l(u)

qu qh_l—l
= Z x(w) Z (<u +g7r)— 1+ vqfxw_l(u))n
u=1 =0
(u,p)=1

By expanding, the inner sum on the right can be written

/1-—1_1

D (u+gr) — 1+ vgfw ™ @)

v=0

q

qh—]_l
E= Z < ) U+ qgr) )"—quf;w_k(u) Z vk
v=0
Since (u,p) = 1, we obtain the equivalence

i ((u+ gr) — l)n_k =0 (mod ¢"0)

for each k, 0 <k < n. Furthermore, by Lemma 3.1

h—1 -1

Z v =0 (mod p~'g" 1)

v=0

q
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for each such k. Therefore
41
Z ((u+qr) — 1 +vgfw™' @) =0 (mod p~g"" o).
v=0
This implies that
thx
> x@(a+qr)—1)"=0 (mod p~'g"" o),

a=1
(a,p)=1

yielding the result. [
We now derive our bound on the magnitude of c,(7).

PROPOSITION 3.3. For all 7 € Cp, |7|, <1, and for n€Z, n >0, we
have |ca(T)|, < Ipafy, lal)-

Proof. This follows in a manner similar to that given for the proof of
the bound [c,(0)], < (qux| |q| found in [13] (Lemma 4 of Chapter 3).
However, in this case we use Lemma 2.3 and the properties of x and w to

derive
h

1 q fx
b,(t) = lim —— x(a){a + gt
h—o00 th ; < >
(a,p)=1
for each n > 0, and thus
1 thx
cp(T) = lim —— Z x(@) ({a+qr) — 1)
h—oo fX p—
(a,p)=1

for each such n. From Lemma 3.2 we obtain
cn(r) =0 (mod f7'p~'q" o),
and thus the result. [
For our immediate concern we only need this proposition to hold for all
7 € Q, such that 7|, < 1. However, later on we shall need it in the form in

which we have it.
We are now ready to begin the construction of our L-function.
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THEOREM 3.4. For each 7 € Q,, with ||, < 1, there exists a
power series Ay (s,T) in K. [[s]] such that the power series converges on

{s € C:]s|, < ij;/(p_l)lqb,_l}, and for each n € Z, n > 0, A (n,7)
satisfies
AX(T’L,T) == Bn,x,,(qT) - Xn(p)pn—an,x,, (P_IQT) .

Proof. By Proposition 3.3, [c.(7)|, < Clg|; for all n > 0, where
C = IquXI_l. Therefore we can apply Theorem 2.7 to the sequences

{ba(T)}52, and {c.(T)}2, in K, = Q,(x,7), and for p = |q| < ]pll/(p
yielding this result. [

Let us denote ® = {s € C, : s — 1], <lpl1/(p g '~1}

THEOREM 3.5. For each 7 € Q,, with I'rlp < 1, there exists a unique
p-adic, meromorphic function Ly(s,T;%) that can be expressed in the form

L,(s,75x) =

)4 Z an(T)(s — 1)",

where the power series converges in the domain D, having coefficients
an(7) € Qp(x, T), with

1—_7 le:I
_ p
L {o, ifx #1.

Furthermore, for each n € Z., n > 1,
1
Lp(l - n,T, X) - _Z (B”>Xn(q7») o X”(p)pn—anvXn (p—qu)) :
Proof. Let

(13) Ly(5,720 = Ayl —5,7)

with the A, (s,7) as in Theorem 3.4. Then from the properties of A, (s, 1),
the power series must converge in the given domain, and for n € Z,n>1,

1 1
L,(1—n,1;x) = ~£Ax(n,T) = (Buy, (q7) — Xn(P)P" "' By, (p—lq’r)) ,
Note that

a-1(7) = Ax(0,7) = Bo,(qm) — x(p)p™'Bo (p~'q7)
=1 —x(pp~ "By,
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and thus
1— l, if x=1
a_(t) = P
0, if y#£1.
The uniqueness of L,(s,7;x) follows from Lemma 2.5. ]

At this point we have not completed our goal of showing that the p-adic
function L,(s,7; x) exists for each 7 € C,, |7], < 1. In order to prove this,
we will need to study the coefficients, a,(7), of the power series expansion
of L,(s,7;x) for each 7 € Q,, [’rlp < 1. From the results of this we will
show that the function L,(s, ;) exists for each 7 € C,, ITlp < 1, and for
any sequence {7;}°, in ﬁp, with ]T,-]p < 1, converging to 7, the values
L,(1 —n,7;;x) converge to L,(1 —n,7;x) foreach n€Z, n>1.

32 Ly(s,T;x) FOR T € C,, |7'|p <1

Our previous work has been for 7 € Q,,, |7’1p < 1. To extend this result
toall 7€ Cp, |7], <1, we need to find a way to express a,(7) so that it
can be defined for these values of 7.

For k € Z, k > 0, the Stirling numbers of the first kind, s(n, k), are
defined by the generating function

oo

|
(14) ;S(n,k);l—! = 7 (og(1 + 0 .

Since the power series expansion of log(1l+¢) lacks a constant term, we must
have s(n, k) = 0 whenever 0 < n < k. We also have s(n,n) =1 for all n > 0.
The s(n, k) are integers, where n,k € Z, n > 0, k > 0, and they satisfy the
relation

x 1 —
(15) <n> == Z%S(n,k)xk.

For additional information on Stirling numbers of the first kind we refer the
reader to [6], pp. 214-217.

LEMMA 3.6. Let T€Q ,

T|p§1.FornEZ, n>—1,

(6. @)

a,(T) = (—=1)*+! Z %S(m, n—+ 1De,(r).

m=n-+1

Proof. From. Corollary 2.8 we can write




A p-ADIC L-FUNCTION OF TWO VARIABLES 251

Ay (s, T) = Z (};) cm(T) ,

m=0

where s € C, such that [s| < |p|;/(p—1)‘q};1. Now, expanding the quantity

(,fz) according to (15) yields

oo m 1
A(s, )= Y —s(m, (s,

m=0 n=0

where s(m,n) € Z is a Stirling number of the first kind. At this point we
wish to switch the order of summation in this expression, but before doing so
we must show that the terms in the summation converge to 0 at a sufficient
rate.

Let € > 0 and let £ € C, such that [§], < lpI;/(p-I)qu;l. Then there
exists 6 € R, 0 < § < 1, such that

1 —1 —1
€1, =6 Ipl,/ " Plal "

Let N,M € Z, N >0, M >0, such that if n > N then |pgf, | '6" < e,
and if m > M then |qux|;l|p

0 < |p|, /" Plql, < 1).
Let myne€Z, m>0, n>0.1If n>m, then s(m,n) =0, and so

p“m/(p‘l)lqll’f < € (such an M exists since

|is<m,n>cm<v>£”
m! .

Thus we can assume that m = max{m,n}. Consider

|
l o Stm, mem(T)E"

~1
< |m!], lem(D], €] -
p

Utilizing Proposition 3.3 and the fact that vp(m!) <m/(p—1), we can write
=1 n — —(m—n -1 m—n cn
mll, len(MI €L < pafcl, lpl, " 7P lglr s
Suppose that m > M +N. If m —n < M, then
M+N<m<M-+n,
so that n > N. Thus

ml|, len(D, 1€ < Ipafyl 6" < e.

If m—n>M, then

[ SNt S



252 G.J. FOX

-1 n —1_|—(m— —~1 —
ml|, em™ 8L < pafy | pl @7 PPl < e

Either case implies that

< €.
p

t iS(m, n)em(T)E"
m!

Therefore, whenever max{m,n} > M + N, this bound must hold, implying
that

>N ;i—'s(m, Wen(TE =Y Y }%S(m, mem(T)E",

m=0n=0 n=0 m=n

by Proposition 2.4.
Writing
oo o0 1
Ao, )= 5" ) | —sm, men(7),
n=0 )

m=n

we have from (13),

1 & =1
Lp(s, 7520 = —— > (1= 9)" ) | —s(m, mecn(7)
n=0 m=n

oo >

— Z(—l)”+1(s~ 1) Z %S(m,n+1)cm(7),

n=-—1 m=n+1

which implies the lemma, since we must have convergence for the inner
sum.  []

Since we have only derived L,(s,7;%) for 7 € Q,, 7], <1, we cannot
say that a,(7) is defined for all 7 € C,, ]Tlp <1l.FornelZ, n> -1, let
us define

oo

(16) a(M =D S sm,n 4 De(r),

m=n+1

for these values of 7. Note that in the proof of Lemma 3.6, the only influence
generated by the value of 7 is in the bound of the value of |cm(7)|p, which
was determined in Proposition 3.3. However, this proposition holds for all
T € C,p, ITIP < 1. Thus this sum converges and a,(7) is well-defined for all
Te€Cp, |7, < 1.
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THEOREM 3.7. Let 7 € Cp, |7|, <1, and let {1;}2, be a sequence in
Q,, with |7il, <1, such that 7; — 7. Then for n€ Z, n > —1,

lim a,(m;) = an(7).

Proof. By definition, for 7 € C,, |7'|p <1,and for n€Z, n> —1, we
have the expansion

oo

() = (1Y som o+ D),

m=n-+1

and as we have seen, regardless of the value of 7,

1 - —m/(p—1 m
\mm,nmcm(f) < Ipafil; ol gl — 0

p

as m — oo. Therefore given € > 0 there must exist some mg € Z, mo > n+ 1,
such that

oo

S st + Den(™)
m!

m=my +1

< €.

p

Thus for any sequence {7;}{°, in Q,, with ||, <1, such that 7; — 7,

)

|an(T) — an(1))|, < max {6, %S(m,n + 1) (em(T) = (1))

n+1<m<my

Since 7; — 7 and c¢,,(7) is a polynomial in 7, we see that

< €

l—l—'S(m’ n+ 1) (cn(T) — cn(T))
m! P

for all m with n+ 1 < m < my when i is sufficiently large, which implies
that

‘an(T) - an(Ti)lp <€

for such i. Therefore the theorem must hold. ]

The purpose of the following three lemmas 1s to build an upper bound for
the value of |an(7)lp. After doing so we can define L,(s, 7;x) for all T € C,,
7], < 1.
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LEMMA 3.8. Let p be prime. If i,n € Z with 1 <i<n, then
(1)
. |P
i

Proof. For i € Z S}lch that 1 <i <n, (8) implies that v,(i!) <i—1, or
equivalently, |i!] > |p |;_1. Therefore by combining this with

(n)l- nn—1)---n—i+1)
. |P
o p

7!
the result will follow. L]

p

pl, < litl, nl,lpl,

LEMMA 3.9. Let p be prime. Then for mn € Z, m >n > 0,

n! .
—Sm,mg"™ | < |np],|ql, .

p

Proof. From (14), the generating function for the s(m,n), we obtain

a
D> —stm,m)g"" = (log(1 + gn))" .

m=0 )
Thus we wish to evaluate the power of p that divides the coefficient of #” in
the expansion of (log(1l 4 g#))". The power series expansion of the logarithm
function (10) yields

o (3D Y
(logl +g0)" = |}  ——4| ,

i=1

and by factoring gt out of the sum,

(ﬁl)i—lp—lqi—lti—?,)n‘

i

(log(1 + g0))" = 4"'1" (1 +pt2

i=2
For i > 2, we see that p~'¢'~!/i € Z,. Therefore
(log(1 +g0)" = ¢"¢"(1 + ptf(1)",
where f(1) € Zp[[t]]. Now, this can be written

n
n n n n i [
(log(l + gt)" = ¢'t" + ¢"1" Y Op 2108
i=1
and from Lemma 3.8, the p-adic absolute value of the coefficients of the
terms in the sum on the right must be bounded above by |np )plq];. Thus, for
m > n, the coefficient of #” must also be bounded above by this quantity,

implying the result. [
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LEMMA 3.10. Let 7 € C,,

7|, < 1. Then for n€Z, n >0,

(_1)n—|—1
n+1

fynlan(T) = fyCnt1(T) (mod g"0).

Proof. From (16), we see that for n € Z, n > 0,

oo

!
frnlan(r) = (<1137 S fsmn+ Dea(r)

m=n-+1

Proposition 3.3 implies that

frCm(T) =0 (mod p~'g" o).

By Lemma 3.9, when m > n + 2,

!
—n—"s(m,n +1) =0 (mod pg" " t1o).
m!

Thus
(_ 1)n+ 1

fxn!an(T) = —mfxc,1+1(7') (mOd qn0) . L]

We are nearing our goal of defining L,(s,7;x) for all 7€ C,, ’r(p <.
The final step before doing so is proving the following lemma on the
convergence of a specific infinite sum.

LEMMA 3.11. Let 7 € Gy, |7], < 1. Then the sum

o

D an(r)(s — 1)

n=0

converges for all s € D.

Proof. Let £ €©. Then | —1]| < Iplll)/(p_l)\qip_l“. Thus there must be
some § € R, 0 <6 < 1, such that

€1, =6 [p,/ " lq|".
Let neZ, n>0. From Lemma 3.10
S+ Dlay(r) = (=" fycpp1(7) (mod (1 + 1)g"0),

and from Proposition 3.3,

—1 n
| fxen1 (M, < Ipl, |4l -
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Therefore
—1 n
| fx(n+ Dlan(m)|, < |pl, lql,,

which implies that

jan(m)], < | £+ DIl gl) -

Thus
|an(r)E€ = 1", < | fn + Dip| ) p[/ P~V
Now,
n
vp((n+ 1) < — T
so that

a(TE — '], < | fpl; 8"
Since 0 < § < 1, we see that |a,(7)(§ — 1)"|p — 0 as n — oo. Thus the sum

o.¢}

D a1y

n=0

must converge. []

Note that from this proof we have obtained the bound

(17) lan(m)l, < £+ Dipl gl

for each n€Z, n> —1, and for all 7€ C,, [7], < 1.
Now let us define

a

NOIES .
— +§an(7xs— 1)

L,(s,7;x) =

for 7 € C,, |T|p <1,and s € D, s #1 if x = 1. This definition is
consistent with what we already have for 7 € Q,, 7], < 1. We will now
show that, for all 7€ C,, |7|, <1, this function satisfies

1
Lp(l - n7T;X) = —_,; (Bn7Xn(qT) - Xn(p)pn—an,Xn (p_qu)) ’

for each n€ Z, n > 1. To do this, we prove the following:
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LEMMA 3.12. Let 7 € C,, |7|, < 1, and let {7i}32, be a sequence in
Q,, with IT,-IP <1, such that 7; — 7. Then for each n € Z, n>1,

lim L,(1 —n,7i;x) = L,(1 —n,7; %)

i— 00

Proof. We can write

Lm0 = X2 4 S a1
=0

where the power series converges for each s € ©.
Let € >0, and let n € Z, n > 1. Then we must have 1 —n € ©, and
thus the power series converges for s =1 —n. Also, by (17)

|am(T)(=n)"], < | fitm+ Dip| ' ng[y — 0

independently of 7 as m — oo. Therefore, for my € Z sufficiently large,

oo

> an(m)(—n)"

m=my

< €.

P

For 7 € Cp, |7], <1, let {7;}2, be in Q,, with |7i|, <1, such that 7; — 7.
Consider

|Lp(1 —n, T, X) - Lp(l —n, T, X) |p S Ognrlna<xmo {6, l(am(T) - am(Ti)) (_n)m ‘p} .
Since an(1;) — an(7) as 7; — 7, we have
ILy(1 = n,73%) — Ly(1 = n,7i30)], < e

for i sufficiently large. Thus the lemma must hold. [
At this point we have finally proven

THEOREM 3.13.  For each T € C,, with |T|p < 1, there exists a unique
p-adic, meromorphic function Ly(s,T;X) that satisfies

1
Lp(l —n,T;X) = _E (Bn,xn(qT) - Xn(p)pn_an,x,, (p_IQT)) )

for each n € Z., n > 1. Furthermore, this function can be expressed in the
form

L0 = =0 4 3,5 - 1y,
n=0




258 G.J. FOX

where the power series converges in the domain ©, and

_ 1 2 —
a_l(T):{l o l.fx 1
0, if x#1. []

Since L,(s,7;x) is defined for each 7 € C, such that ]Tlp <1, we now
have a p-adic function of two variables, L,(s,t;x), where s € D, s #£ 1 if
x=1,and t € C, with |t|, <1.

4. PROPERTIES OF Ly(s,t;X)

Most of the properties that follow are direct consequences of similar
properties that hold for the generalized Bernoulli polynomials. In all of the
following we will take p prime and x a Dirichlet character with conductor f, .

4.1 A SYMMETRY PROPERTY IN ¢

The first property we obtain regarding L,(s,f; x) 18 a direct consequence
of the generalized Bernoulli polynomials being either odd or even functions,
except when x = 1. Recall that L,(s,t; x) interpolates the values

1
(18) L,(1 —n,t;x) = —=by(1),
n
forneZ, n>1,and t € C,, [t[p < 1, where

(19) ba() = By, (@) — Xu(P)P" 'Bux, (0™ 'qt)

and we define

n

(20) HOEDY (Z) (=1 "bu(0).

m=0

LEMMA 4.1. For all neZ, n> 0, we have

Bui(—=1) = (=1)"By1(t) — (=1Y'nt" "

Proof. This holds for n =0 since Bg(f) = 1. Now assume that n > 1.
Because B, ; =0 for odd n > 3, we can write (2) in the form

n

B, 1(t) = Z <:1>Bn—m,1l‘m+ﬂ31,1fn'—l-

m=0
n—m even
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Any m such that n —m is even must have the same parity as ». Thus

R

Boi(—1) = (=1" > (Z)Bn_m,lr’"+<—1)”*1n81,1r"—1

m=0
n—m even

= (_l)an,l(t) - 2(—‘1)nI’LBl,1tnw1 .

From the value B;; = —B; = 1/2, the lemma then follows. [l

LEMMA 4.2. Forall neZ, n> 0,

bp(—1) = X(‘" )b, (1).

Proof. This is obviously true for n = 0 since

bo@®) = (1 = x(p)p~") Box »

and By, = 0 except when x = 1, in which case Byp; = 1. So we can assume
that n > 1.
First consider the case of x, = 1. This implies that Yy = w". By Lemma 4.1,

bu(—1) = Bu1(—qt) — "~ 'Bu 1 (—p~ ' q1)
= (—=1)"By,1(q?) — (=1)"n(gt)"™"
—p (D Bas (p7ar) — (< 1n (p7qr)" )
= (=1 (Bui(g) = p" "B (P 'qt))
= (—=1)"b, ().
Since x¥ = w" and w(—1) = —1, the lemma holds for x, = L..
Now suppose that x, # 1. Then, from (3),
ba(—1) = By,x,(—=qt) = xa(P)P" " 'Bux, (—p'qt)

= (=1)"Xa(—=1) (Ba,x, (@) = Xa(P)P" "By, (p~'qt))
= (—1)"xu(—= Dby ().

Note that x, = xw™", which implies that x,(—1) = (=1)*x(—1). Thus the
lemma also holds for y, # 1.

Since the lemma holds for both x, = 1 and Yy, # 1, the proof must be
complete. [

Using this result, we can prove
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THEOREM 4.3. Let t€ Cp, |t|, <1, and s €D, except s #1 if x = 1.
Then

Ly(s, —t;x) = X(=DLy(s, 1 X) -

Proof. From Lemma 4.2 we see that

bn(—=1) = x(=1)bn(1) .

Also, (20) implies that
Cn(-t) = X(—‘l)cn(t) .

From (16), whenever n > —1,
an(—1) = x(—Dan(1),

which implies that

Ly(s,—t;x) = x(=DLy(s,t;x). [

If x(—1) = -1 and t =0, then

L,(s,0;x) = —Ly(s,0; x),

which implies that
Ly(s;x) = —Lp(s3 %)
and thus L,(s;x) =0 for all s € D, as we would expect.

4.2 Ly(s,t;X) AS A POWER SERIES IN 1 —a, a € C,, |a|, <1

To develop L,(s,t;x) in terms of a power series in ¢ will enable us to
find a derivative of this function with respect to this second variable. All this
we shall do, but before doing so we need to specify some notation.

LEMMA 4.4. Let t € C,,

tlpgl. Then for n€ Z, n>1,

1
— (1 —x(p)p™") Boy -

lim (':> Ly(s+nt;x) =

s—1—n

Proof. Recall that, from Theorem 3.13, we can write

LP(S) £ X) = a—l(? + Zam(t)(s - 1)m,
m=0

where a_1(t) = (1 — x(p)p~ DBy, . Thus
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hq@—lﬂﬂ&mxﬁzofﬁﬂpm—”Bwp

Now let n € Z, n > 1, and consider

— , n—s
lim ( S>Lp(s +n,tx) = hrr% < , >Lp(s, 1 x) -
b Yo o

s—1—n n
If n =1, then we write this as
lim(1 — $)Ly(s, 1530 = — (1 = x(P)P™") Bos -
S—

If n> 2, then

which implies that
_ 1 n—2
lim ( ) )Lp<s 6 = — (}gq g(n —5— z)) (tim(1 = )Ly(s,50)

|
=—;(P—MPW"UBWV

Therefore the lemma holds for all n > 1. L]

Now, because L,(s,#;1) is undefined when s = 1, the quantity

—S
<n>g@+man

is undefined when s =1 —n, for n € Z, n > 1. However, Lemma 4.4 shows
that this quantity exists as s — 1 — n. In the following we will encounter

expressions that involve (~°)L,(s + n,#;X), and because of Lemma 4.4 we
shall assume the understanding that

(_S> L,(s +n,tx)
n

forneZ, n>1.

1
- (1 —x(p)p™") Box

s=1—n

THEOREM 4.5. Let t€Cy, [t]|, <1, and s €D, except s # 1 if x = 1.
Then

o0

@1) L(s,t:0 = Y (;j) gLy (s + 13 Xom)

m=0

Proof. Lett€C,, |t|, <1, and let k € Z, k> 1. Then
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k

k—1 r—1
"L (1 — (K — m); Xn) .
+mz_0< - >6] p(1 — (kK —m); Xm)
By evaluating the L-function, we obtain

k—1 1/k
( m >Lp (1 - (k - m); Xm) - _E <m> (1 - Xk(p)pk—m—l) Bk—m,xk )

and thus

(e o]

Z k—1
m:0< m )qmtmLpU — (k= m); Xm)
:——Z< ) e 1_Xk(p)pk " I)Bk m, Xk )

which implies that the sum converges for s = 1 — k. Breaking this into two
sums

= (k—1\ 1 _
Z( " )q "Ly (1= ke m3 xm) = —24“4(1 = Xe(P)P ™ )Box,

m=

oo

k—1
_S_ ( >qmrmLp (1 - (k—m)aXm)
m

m=0
k k
1 k " 1 _ k —m_m
= —-% g <m>Bk—m,qu "+ }C‘Xk(p)pk ! E :(m>Bk~m;ka q "
m=0

m=0

1
= =1 (Brx(a) = ()P B, (P a1))

=L, (1 -k 1:X) .

Thus (21) holds for a sequence {1 — k}2, that has O as a limit point.
Lemma 2.5 then implies that Theorem 4.5 holds for all s in any neighborhood
about 0 common to the domains of the functions on either side of (21).
Now we will show that the domains, in s, of each of the functions on
either side of (21) contain ®©, except s # 1 when x = 1.
This is obvious for the function L,(s,;x). Consider the function

> (D)aenesmxn =3 3 (7)a a4t m— 1

m=0 m=0n=-—1

We have seen that this sum converges for s =1 —k, where k€ Z, k > 1.
Now we need to show that it converges for s = &, where £ € D, £ # 1 if
x=1,and £ #1—k for ke Z, k> 1. So let ¢ satisfy these restrictions,
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and let € > 0. Note that [§ — 1| < r, where r = |p|;/(p—1)|q|p_1. Let rp € R,
0 <rp <r, such that |[{ — 1| =ro. Then for any m € Z, m > 0,
[E+m—1], < max{|m|p, 1€ — llp}

<max {l,r},

implying that £ +m € ©, £ +m # 1. Let § € R such that ° = max{1,r}.
Then 0 <6 < 1, and

(22) | [E+m—1], <.

Let Ny € Z such that

’*(1*5)(1\71—1)/(P—1)’ql(1—5)(N1—1)
P

p™ql,Ipl, <e.

Then for any m € Z., m > 1, such that m > N;, we must also have

—(1=8)(m—1)/(p—1)) _(1=6)(m—1)
| lgl,

p'q] Ip], <e.

<—£>@>+m——n—1
m

= [¢ +m —ll”H - “(l_l)‘

< ;oD

For m € Z., m > 1, consider

() raerm—07] <ipl;aly

P

p
Note that, by (22),

'(;f)(&m— 1)*

Therefore

< Ipl, 'lglym!], o,

p

<;§> qrtma_iy,(E+m—1)7!

and from the bound
(m—1)/(p—1)
imf‘p Z |p‘p ?

we obtain

l (;f) q"t"a_y ., (E+m—1)""

Thus if m > N;, then

— —(1=6)(m—1 - — -
P

‘ (;1§> g t"a_1y,E+m -1 <e.

p
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Now let N, € Z such that
—1;_ —(1=8)N2/(p—1 1—8)N
|fepl, pl, OO g (7O <

Then we must also have
p| " p| A= O tm/ (=1 1 (1=6)om+
4fX ‘p | Ip ( Ym+n)/(p )|‘]|§; Ym+n) <€

for any m,n € Z such that m > 0, n > 0, and max{m,n} > N,. Let us

consider
= ‘ ( m )
p

_5 m n
(m>q trnan,xm(§+m_ 1)

where mn € Z, m> 0, n> 0. For all m > 0,
()] < meen
mJlp
and by utilizing this along with (17) and (22), our expression becomes
("5> " ", (€ +m — 1)
m

Since

1917 | JE+m — 112,
P

< |mltn+ DU fpl, P gt
14

ml(n + D], > |p|+/ 7D,

we obtain
(‘5)4%%%KA5+4n—1Y
m
Thus if max{m,n} > N,, then
l (:f) g " apy, (E+m—1)" <e.
p

Let N = max{N;,N,}, and let mn € Z, m > 0, n > —1. Then for
max{m,n} > N, it must be true that

(’6) G ", (€ 4+ m — 1)
m

=1 (—(1—=6)m+n -1 1=8)(m+n
< 1l pl, TR g e,

p

<E€.
p

Thus, by Proposition 2.4, the sum

> (;f) " " @y, (€ + m— 1)"

m=0n=—1
must converge. This implies that the function on the right of (21) must converge
for all s € ©, except s # 1 if x = 1, and the theorem must then hold. [

Since we can now express L,(s,f;x) in terms of a power series in , we
can take a derivative of this function with respect to f.
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LEMMA 4.6. Let t € Cp, |t|, <1, and s €D, except s # 1 if x = 1.
Then

14

—g—L (s,t;x) = nlg" ( )L (s + 1,8 Xn)

for ne Z, n> 0.

Proof. 1If n =0, then the lemma is obviously true. So consider n = 1.
Applying Proposition 2.6 to (21),

0 - =S\ m —
§Lp(s,t;x) = n;l (m)q mt" ILp (s + m; Xm) -
Now,
()= (1)
m = —S 5
m m—1
so that
QL (s, ; )__i(_) —s—1 mlm—lL (s + m; )
6tp HX _m—-l ’ m—1 1 p S > Xim
N
= *C]SZ ( )memLp (S + 1+ m;X1+in)
m=0

= —gsL, (s + 1,6, x1) .
Now suppose that

71

8”L (s,t;x) = n! ”( )L (s + 1,1 Xn)

for some ne€ Z, n> 1. Then
n+1 6 an

—s\ O
= nlg’ ~L :
nq (n)@t p(5+n>t’Xn)-

From the case for n = 1, we see that

nf—S\ O _ wl =S
nlg <n>—(—9—tLp(s+n,t,Xn):n!q <n>(—s~n)qu (s+n+1,t;xn+1)

i -8
=+ 1lg +1 <n+ 1>Lp (s—!—n+ 1,t;x,,+1) )

Therefore
n-+1

n-+1 -
L5 60 = (4 Dlg (Hl)Lp(wnH,z;an),

and the lemma must hold by induction. [
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With this result, we can derive a more general power series expansion of
LP (Sa [N X) .

THEOREM 4.7. Let t€ Cp, |t|, <1, and s €D, except s# 1 if x = 1.

Then for o € C,, oz|p <1,
[~
L,(s,t;x) = Z;O <m>qm(z‘ —a)"L, (s +m, a; Xm) -

REMARK. Note that Theorem 4.5 is the case of o = 0 here.

Proof. It follows from the Taylor series expansion of L,(s,#; x) in the
variable ¢ about o (see Proposition 2.6) that we can write L,(s,?; x) in the
form

Ly(s,5X) = Y _ Pt — @)™,
m=0

where
Y41

~ m! o

B Ly(s, %)

=«
From Lemma 4.6

1 o™

m) Om

S
L,(s,t;x) = ( m )q’”Lp(S +m,t; Xm) ,

and so

B = <m>q L,(s +m, o Xm) ,

completing the proof. [

4.3 RELATING L,(s,t;x) TO SOME FINITE SUMS

From (4) it becomes obvious that the generalized Bernoulli polynomials
have a considerable significance in regard to sums of consecutive nonnegative
integers, each raised to the same power, itself a nonnegative integer. The
following illustrates how this can be extended with the use of L,(s,1; x).

For the character x, let Fy = lem(f,,q). Then f,, | Fo for each n € Z.
Also, let F be a positive multiple of pg~'Fy.
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THEOREM 4.8. Let t € C,,

t|, <1, and s€D, except s # 1 if x = 1.

Then
qF

(23) Ly(s,t+ F;x) — Ly(s, ;) = — Y xa@{a+q1)~"
a=1

(a,p)=1

Proof. Let t € C,,

tkp <1,and let n€Z, n>1. Then from (18),

1
Lp(l — n,[—[—F;X) - Lp(l —n, 1 X) — "'Z (bn(t+ F) — bn(t)) .
Now, (19) implies

bu(t + F) = by(t) = (By ,(q(t + F)) = xu(p)P" ™' Buy, (0" q(t + F)))
~ (Buxa (@) — Xa(P)P" " 'Boy, (p7'qt))
= (Bu, (q(t + F)) = By, 5, (q1))
— Xu(P)P" ! (Bu, (P7'qlt + F)) =B,y (p'qt)) .

Thus, by (4), we can write

bn(t + F)—_bn(f)

qF p~'qF
=n) xa@@a+g)" = nxu(pp"" Y xu@)a+p g
a=1 a=1

gF qF
=n) Xe@(@+ag)"" —ny xu@a+ g

a=1 a=1
pla
Therefore,
gF
L =mt+F)—Ll-ntx)=— Y xda)a+q) "
(ai;il

Now, x, = xiw~ "~V so that

Xn(@(@+ 0"~ = xi(@w ™" Da)a + gy
= x1@{a+qt)" .
Thus

qF
Ly(1=nt+ F) = Ll —n50 =~ Y xi@la+ gi)"",

a=1
(a,p)=1
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and (23) holds for all s =1 —n, where n € Z, n > 1. Therefore, since the
negative integers have 0 as a limit point, Lemma 2.5 implies that Theorem 4.8
holds for all s in any neighborhood about 0 common to the domains of the
functions on either side of (23).

It is obvious that the domains, in the variable s, of the functions on the
left of (23) contain 2, except s # 1 when x = 1. Consider now the function

— Z xi@{a+qt)™° = — Z xi1(@){a+qt) " Ha+qt)' .

a=1 a=1
(aap)zl (a,P):l

Since it consists of a finite sum of functions of the form (a + gr)!~*, where
a€c€Z, (a,p) =1, we need only show that each such function is analytic on
®, and the proof will be complete.

The quantity (a + gt)! = can be written as

(a+ gt)' = exp ((1 — s)log(a + qt)) ,

and by (9), the Taylor series expansion of the exponential function,

oo

1 m
la+qt)' ™ = Z — (- s)" (log(a + qt))

m=0
Since (a + gt) = 1 (mod go) for a € Z, (a,p) =1, and 1 € Cp, |t], <1,
we must also have log(a + gt) = 0 (mod go) for such a and ¢. Thus

‘——(1 — s)" (log{a + qt)

}—q - D"
P
for all m. By (8) we can write

1
l—,q’“(s—l)'" < [0 1|
m:. D

m

= 'p‘”“””q(s -1

p
Thus if
g 1) <1,
p
then 1
‘—"—(1 —5)" (log{a + qt))m —0
m! »
as m — 0o. So whenever [s—1| < Ipil/(” 1)(ql , meaning that s € D,

we have convergence for the power series. Therefore the functions on either
side of (23) have domains that contain ®, except possibly for s = 1 when
x = 1, and the theorem must hold. [
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COROLLARY 4.9. Let s €D, except s# 1 if x=1. Then

qF
L(s, F20 = Lp(six) — Y, xi@{a)™".

a=1
(a,p)=1

Proof. 'This follows from Theorem 4.8 since L,(s,0;x) = Ly(s;x) for
any character x. [J

We shall now consider how Corollary 4.9 can be utilized to derive a
collection of congruences related to the generalized Bernoulli polynomials.
Let A, denote the forward difference operator, A.x, = X,4+. — X,. Repeated
application of this operator can be expressed in the form

k
k —m
Aléxn = Z <m> (_l)k Xn+mc -

m=0

Recall that Fp = lem(fy,q). For n€ Z, n > 1, denote

1
ﬁn,x(t) — —Z (Bn,x,,(qt) - Xn(p)pnmlB’T’Xn (pglqt)) )

This is the polynomial structure that we utilized with respect to generalizing
the p-adic L-functions. We will incorporate this structure in an extension
of the Kummer congruences, but the results that we derive will be without
restriction on either x or p.

THEOREM 4.10. Let n, c, and k be positive integers, and let T € Z,
such that |T|p < }pq_lFo’p. Then the quantity q“kAlgﬁn,X(T)—q'kAfﬂn,X(O) €
Z,[x), and, modulo qZ,(x], is independent of n.

Proof. Since A, is a linear operator, Corollary 4.9 implies that

qF
A];Lp(l —n,F;x) = AIC{LP(I —n;x) — Z Xl(a)Alé<a>n_1,

a=1
(a,p)=1

where F is a positive multiple of pg~'F,. Thus

qF

DBy (F) = 8By (0) = — Y x1(@)(a) ™' A¥a)".
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Note that

k
@ s =Y () = (o) (@ - 1)

Now, (a) =1 (mod ¢Z,), which implies that (a)° =1 (mod gZ,), and thus
A(a)" =0 (mod ¢"Z,).
Therefore
A (F) = A 5 (0) = 0 (mod ¢"Z,[x1)
and so q‘kAlgﬁn,X(F)-q—kA’C‘ﬂn,X(O) € Z,[x]. Also, since (a)" =1 (mod ¢Z,),

gF

c_ 1 k
25) g AL (F) — g T* A B 0 = = Y xi(@)(a)" ! (<a>q )

a=1
(a,p)=1

implies that the value of ¢ *A*B, . (F) — g *A%3, ,(0) modulo gZ,[x] is
independent of n.

Let 7 € pq~'FyZ,. Since the set of positive integers in pg~'FyZ is dense
in pq_lFoZp, there exists a sequence {7;}%°, in pg~'FyZ, with 7, > 0 for
each i, such that 7, — 7. Now, (,,(f) is a polynomial, which implies that
B, (Ti) = Bu (7). Therefore

Hm (A8 x(71) = AgBux(0)) = Alfx (1) = AlBx(0)

The left side of this equality is 0 modulo ¢*Z,[x], which implies that

A () — BB x(0) = 0 (mod ¢'Z,[xD),

and so ¢ *AkB, (1) — g*ALB, ,(0) € Z,[x]. Furthermore, for n’ a positive
integer,
lim (47 A () = ¢ DB x () = (7 B x (1) = G A ()

= ((q_kAléﬂn,X(T) - q—kA]c(ﬁn,x(O)) - (q—kAlgﬁn’,x(T) - q_kAlé/Bn’,x(O))) .

Since 7; € pg~'FoZ for each i, the quantity on the left must also be 0 modulo
qZ,[x]. Therefore the value of g *A%B,, (T) — g * A%, (0) modulo gZ,[x]
is independent of n. [
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THEOREM 4.11. Let n, ¢, k, and k' be positive integers with k = k'
(mod p — 1), and let 7 € Z), such that IT qu 1Fo) Then

q_kAIé:Bn,x(T) - q—kA]ccﬁn,x(O)
=g ¥ A B, (1) — ¥ A B, ,(0) (mod pZ,[x]).

Proof. Let k and k' be positive integers such that kK = k" (mod p — 1).
Without loss of generality, we can assume that k > k’. From (25),

(q_"AkﬁnX(F)— g A B (0)) — (g% AF By (F) — 7% A B, (0)

= — Z x1(a)(a)"™ 1<< >q—1> + f: Xl(a)<a>nl<<a>cq_l>k/

(ap) 1 (ailp:)il
qF k' k—k’
_ <a>f—1> <<<a>c—1> _1>
; x1(a)(a) ( p p ,
(a,p)=1

where F is a positive multiple of pg~!Fy. If a is such that

(@) —1# 0 (mod pqZ,),

then

e 4 k=K
<<a>q 1) ~1=0 (mod pZ,),

since Kk — k' =0 (mod p — 1). Thus
G DB (F) = g A B 1 (0)

=g X A B (F) — g A¥ B, ,,(0) (mod pZ,[x]).

Now let 7 € pg~'FoZ,. Then there exists a sequence {7;}%°, in pg—'F,Z,
with 7; > 0 for each i, such that 7; — 7. Consider

Hm (@ AL (70) = 4 A (O0) = (@AY B (73) — g AF 3,,,(0)
= (4 BB () = AL x(0)) = (a7 AL Boy () ~ g7 A B, (0))

Since the left side of this equality must be 0 modulo pZ,[x], the theorem
must hold. []
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THEOREM 4.12. Let n, ¢, and k be positive integers, and let 7 € Z,
such that |7|, < ’pq_ng‘p. Then the gquantity

—IA —IAC
(q )ﬁn x( )_ (q k )ﬁn,x(o) € Zp[X]a

and, modulo qZ,[x], is independent of n.

Proof. We are once again working with a linear operator, so Corollary 4.9
implies that

_IAC —IAC aF —IAC
(‘1 . )Lp(l—n,F;X): (q ) )Lpa—n;x)— > X1(a)<q ) )<a>”*1,

a=1
(a,p)=1

where F is a positive multiple of pg~'Fy. Then

~1A, g~ 'A qF —1A,
(7)o = (7)== Y @t (T2 ar

a=1
(a,p)=1

Utilizing (15), we can write

_IAC 1 k

m=0

k

stk,myg~"(a)" ({a)* —1)",

Tk —

which follows from (24). This can then be rewritten as

(q‘;Ac) (@) = (a)" (Q“((ali" - 1)) |

Since g~ '({a)* — 1) € Z, for each a € Z with (a,p) = 1, we see that

—1 c
nl4 (<a> — 1)
(a) ( r €Z,.
This then implies that

g A, 1A,
( )ﬂn X(F) (q k )ﬂn,x(()} S ZP[X]-

Furthermore, since (@)" = 1 (mod gZ,), the value of this quantity modulo
qZ,(x] is independent of 7.
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Now let 7 € pg—'FoZ,, and let {r;}3°, be a sequence in pg~'FoZ, with
7. > 0 for each i, such that 7, — 7. We are working with polynomials, so
that

—IAC ‘IAC
lim ((‘] . )m,xm-)— (q . )ﬁn,xm))

—1 —IAC
b— <q kAC>)8,17X(T) - <q k )Bn,x(())a

which must be in Z,[x] since the limit of any sequence in Z,[x] must also
be in Z,[x]. Now let n' be a positive integer, and consider

tim (74 Bux— (72) Bur ) = (1) B ()= () B x(0)))

= (7% Bu™)= (7% B @) = () B x(1) - (%) B 1))

The quantity on the left must be 0 modulo gZ,[x], which implies that the

value of
~lA ~lA
(q k );Bn,x(’r) — (q k >6}2,X(0)

modulo gZ,[x] is independent of n.  [J

4.4 (GENERALIZED BERNOULLI POWER SERIES

In [9] we find a definition of ordinary Bernoulli numbers of negative index,
B_,, where n€ Z, n>1, in the field Q,, given by

(26) B—n == kl—lsnolc Bqﬁ(p")——n)

where the limit is taken in a p-adic sense. Note that ¢(p*) — 0 in Z, as
k — oc. Since |B,, |p is bounded for all m € Z, m > 0, we must have

2 5(p*y—n—
By = lim (1-p*" ") Booty—n

k—oc

= Jlim — (6 (1) ~ W) 1, (1~ (9 () — ) s77)

k—oc

=nL, (n+ Lw™) .

implying that the limit exists and can be described in familiar terms.

Recall that B,, = 0 for any odd m € Z, m > 3. Thus (26) implies that
B_, =0 for any odd n € Z, n > 1. Furthermore, we have the following :

[ S
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THEOREM 4.13. Let n € Z be even, n > 2. Then

B+ > %EZP,

r prime
(r—Djn

where each prime r is taken to be a rational prime.

REMARK. Since 1/r € Z, for any rational prime r # p, this implies that
B_,+1/p € Z, whenever (p—1)|n, and B_, € Z, otherwise.

Proof. By the von Staudt-Clausen theorem, we know that

for any even me€ Z, m > 2.

Let n € Z be even, n > 2. For any integer k > 2, ¢(p*) is even and
(p—1) | &(p*). Thus ¢(p*) —n is even, and (p — 1) | n if and only if
(p— 1) | (¢(p*) — n). Therefore, if k is sufficiently large,

1
By pky—n + Z - €Z,,

r prime
(r—Din

and the result follows from (26). ]

In a similar manner we define generalized Bernoulli numbers of negative
index, B_, ,, where n € Z, n > 1, in the field C, according to
(27) B_n>X - lim B¢(Pk)_"»X7

k— o0

where the limiat*is once again taken in a p-adic sense. For each m VE Z,m>0,
the quantity |Bm,x|p is bounded. Thus, since x4,x) = x for all characters x
and for all k€ Z, k> 1, we can write

B = lim (1—x k(p)pd’(pk)—”_1 By o
—n,X A ¢(p ) ¢(P )_n7X¢,(pk)

= lim — (¢ (p) —n) L, (1= (¢ (¢") — 1) 1 xn)

k— o0

= an (n+ 1;xn) ,

so that the limit exists. Since By pr_n1 = By(pty—n for n,k € Z, with n > 1
and k sufficiently large, we obtain B_,; = B_, for all such n.
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If k> 2, then ¢(p¥) is even. Thus n and ¢(p*) — n are of the same
parity. Recall that
{ 1, if x 1s odd
1o, if x 1s even.
Then By pty—n, = 0 whenever n # 6, (mod 2), provided (P —n > 1.
Because of this, the relation (27) implies that B_,, = 0 whenever
n# 0, (mod 2) for all n € Z, n > 1. Furthermore, we can obtain

THEOREM 4.14. Let x be such that x # 1, and let n € Z, n > 1. Then
FiB-nyx € Lplx].
Proof. Recall that when x # 1, fiBny € Z[x] for all me Z, m > 0.
Thus
FiBnx = kl_in;ofxB¢(pk)—rz,x
must be in the p-adic completion of Z[x] for any n € Z, n > 1. Since the
p-adic completion of Z[x] is Zy[x], the theorem must hold. [

We now define what we shall refer to as generalized Bernoulli power series
of negative index in Z,[x]. For n € Z, n>1, and for 1 € C,, 1|, < |q],,
let

B_nx(®) = klfgo By pry—nx (D) -
Then

. by,
B, x(qt) = kgrgo(B(b(pk)_n,xd)(pk)(qt) — X¢(pk)(p)p¢(” )—n—1

= lim —(¢(p") =)Ly (1 = (¢(p") —n), 1 x)
= an(n + 1,1 Xn) .

—1
B¢>(p"')~n,x¢(pk) (p qt))

Since L,(n+1,¢;x,) exists for each n € Z, n > 1, and 1 € Cy. t|p <1,
we see that B_, ,(qf) must also exist for such ¢. Thus B_, (1) exists for

te Cy, |t|, <lgl,- Now, by Theorem 4.5, we can expand this quantity as a
power series, obtaining

oo

- 1
B_, (gt =n Z < (nm+ )> q"t"L, (n +m+ 1; Xrl+m)

m=0

[~ +1D\ , . 1
=n 3 (O )b

e n+m

= [—n
- Z - )B*(wm),xqum -

m=0
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. -1 —1
Since |B_gumxl, < max{|pl; ", £, >"} and

()= ()
m m

this sum converges for Iqt{p < 1. Thus we have the relation

(28) B—n,x(t) = Z (:’:)B—n——m,xtm»

m=0

converging for all ¢ € Cp, |f|, < 1. Note that this is in the same form as
(2) for the generalized Bernoulli polynomials having positive index, which we

can rewrite as
> /n
Bn,x(t): § <m)Bn—m,xtma

m=0

since (;’1) =0 for myneZ, m>n>0. By setting ¢t = 0 in (28), we see
that B_, ,(0)=B_,, forall n€Z, n> 1.

THEOREM 4.15. Let n€ Z, n > 1. Then for any m € £, m > 1, such
that q | mf,,

mfy

B_nx (mfy) =B_nx(0)=-n > x(a)a """

a=1
(a,p)=1

Proof. By definition, since |mf, L, < lal,

B_nx (mfy) = B-nx(0) = kli)ﬂ;o (Botpy—nx (M) = Bo(ptr—n,x(0)

mfy

— i (¢ (pk) _ n) Zx(a)aqﬁ(pk)—n—l’
a=1

k—o0

following from (4). Now, v,(¢(p*)) = k — 1, and a®?) = 1 (mod p*) for
(a,p) = 1. These imply that

mfy mfy
. k——n— _—n—
Jlim (¢ (p") = n) ;:1 x(@a? P = —p a§:1i x@a ",

(a,p)=1

completing the proof. [
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THEOREM 4.16. Let n € Z, n > 1. Then for all x and for all t € Cp,
1], <1,
B—n,x(—t) - (_I)HX(—I)B—n,x(t)-

Proof. Since

(0.0]
—n m
By =) (m >B_n_m,xr ,

m=0

and B_,_, x = 0 whenever n+m # 6, (mod 2) foreach meZ, m>1, we
see that B_, ,(¢) is either an odd or an even function according to whether
n+ 6, is odd or even, respectively. Thus

B_p(—1) = (=1)"™™xB_, . (1)
= (—1)"X(=1)B_n (),

and the proof is complete. [
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