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8 P. BAUM AND A. CONNES

Addition in K*(X,G) is given by disjoint union of K-cocycles. Further,
K'X,6) =K'X,0) 8 K'(X,5),

where K'(X,G) is the subgroup of K*(X,G) determined by all K-cocycles
(Z,€,f) with &€ € Vo(T*Z & f*T*X). The natural homomorphism of abelian
groups
K'(X,G) = K;[Co(X) % G]
is defined by
(Z,8,f) — wZ,&,1) .

CONJECTURE. For any G-manifold X, nu: K'(X,G) — K;[Co(X) x G] is
an isomorphism.

This conjecture is known to be true if X is a proper G-manifold. If X is
proper there is a commutative diagram

K*(X,G) —— K.[Co(X) » G]
AN /@
K&(X)
in which each arrow is an isomorphism. i;: K*(X,G) — K3(X) maps a
K-cocycle (Z,&,f) to its topological index, and o o u: K*(X,G) — Ki(X)
maps a K-cocycle (Z,&,f) to its analytic index. If G is compact then any

G-manifold is proper and commutativity of the diagram is equivalent to the
Atiyah-Singer index theorems of [6], [7], [8].

3. HOMOTOPY QUOTIENT

Let W be a topological space. VO(W) denotes the collection of all complex
vector bundles (Eg,E{,0) on W with compact support. Thus Ey, E; are
complex vector bundles on W and o: Ey — E; is a morphism of complex
vector bundles with Support (o) compact, where

Support (o) = {p € W | o: Eg, — Ej, is not an isomorphism} .

Also V(W) = VO(W x R).
Suppose given an R-vector bundle F on W. Following [9], a twisted by F
K-cycle on W is a triple (M, €, ¢) such that:
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(1) M is a C°°-manifold without boundary;
(2) ¢: M — W is a continuous map from M to W;
3) £ € V¥(T*M & ¢*F) .

As in [9] an equivalence relation is imposed on these twisted by F K-cycles
to obtain the twisted by F K-homology of W :

KE(W) = K5 (W) @ Ki (W)

Kf (W) is the subgroup determined by all (M, &, ¢) with £ € V(T*M®p*F). If
F has a Spin°-structure then KE(W) is isomorphic to K.(W), the K-homology
of W.

With G as in §2 above, let EG be a contractible space on which G acts

freely
EG X G — EG.

Given a G-manifold X, let G act on EG X X by

(r,©) g9 = (pg,xg9)

(p € EG, x € X, g € G). The quotient space [EG x X]/G will be referred to
as the homotopy quotient. Since 7*X is a G-vector bundle on X, the quotient
[EG x T*X]/G is a vector bundle on [EG x X]/G. Denote this vector bundle
by 7 and consider the twisted by 7 K-homology KI([EG x X]/G). There is
a map

KI([EG x X]/G) — K*(X,G).

This map is not quite canonical. First an orientation must be chosen for the
Lie algebra of G, so assume that such an orientation has been chosen.

Let (M,¢, ¢) be a twisted by 7 K-cycle on [EG x X]/G. Now EG x X is
the total space of a principal G-bundle over [EG x X]/G and this principal
bundle can be pulled back via ¢ to yield a principal bundle Z over M

EGxX 2

l K

[EG X X] «—— M.
¢

Let m: EG x X — X be the projection and set f = 7 og,
f1Z—-X.

£ VY (T*Ma ¢*1) lifts to give Ee Ve(p*T*M & f*T*X). Denote the bundle
along the fibres of p: Z — M by F. This is a trivial vector bundle since,
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for each z € Z, F, is canonically isomorphic to the Lie algebra of G. Using
the orientation of this Lie algebra, F has a G-invariant Spin‘-structure so
that £ € V5(p*T*"M @ f*T*X) determines 1 € VE(F @ p*T*"M ©f*T*X). Now
F&p*T*M =T*Z, so (Z,n,f) is a K-cocycle for (X,G). The map

KI([EG x X]/G) — K*(X,G)
iS:
(M, &, ) — (Z,n,f).

This map has a dimension-shift in it. Set € = dim (G). Then with addition of
indices mod 2 this map takes K7 ([EG x X]1/G) to K'*¢(X,G).

LEMMA 1. If G is torsion free then K[([EG X X]/G) — K*(X,G) is an
isomorphism.

Proof. Let (Z,£,f) be a K-cocycle for (X, G). The action of G on Z is
proper, so each isotropy group is compact. Since G is assumed to be torsion
free this implies that the action of G on Z is free. Hence Z is a G-principal
bundle over G/Z, and thus Z maps equivariantly to EG. Combining this with
f:Z — X we obtain a commutative diagram

EGxX +—— Z

l &

[EG x X] «——— Z/G.

Denote the map of Z/G to [EG x X]/G by ¢. Then £ € VI(T*Z & f*T*X)
determines ¢’ € Vi(p*T*(Z/G) @ f*T*X). Since the action of G on Z is free
&' descends to give 8 € V*(T*(Z/G) @ 7). Then

(Z,¢,/) — (Z/G,0,9)

maps K*(X,G) to K[([EG x X]/G) and provides an inverse to the map
KI([EG x X]/G) — K*X,G). [

REMARK 2. If G is the trivial one-element group then the isomorphism
of the lemma becomes
KTX(X) =2 K*(X).

If X is a Spin“-manifold then KI*X(X) = K.(X), so that in this case
the isomorphism of the lemma becomes the Poincaré duality isomorphism
K.(X) =2 K*(X).
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When G has torsion, the map KI([EG x X]/G) — K*(X,G) can fail to
be an isomorphism. The simplest example of this is obtained by taking X to
be a point and G = Z/2Z.

When G has torsion, K7([EG x X]/G) appears to be only a first
approximation to K*(X,G) and K.[Co(X) G]. The key point is that when
G has torsion, there will be proper G-manifolds on which the G-action 1S
not free.

4. SOLVABLE SIMPLY CONNECTED LIE GROUPS

The conjecture stated in §2 above is verified for (connected) solvable
simply connected Lie groups by

PROPOSITION 1. Let G be a (connected) solvable simply connected Lie
group, and let X be a G-manifold. Then there is a commutative diagram

K*(X,6) —5— K.[Co(X) x G]

1 l

K*X) ——  K[Co(X)]

in which each arrow is an isomorphism.
The proof depends on

LEMMA 2. Let G be a (connected) solvable simply connected Lie group,
and let Z be a proper G-manifold. Then there exists a G-map from Z to G.

Proof of Lemma 2. Since the action of G on Z is proper all isotropy
groups are compact. G has no non-trivial compact subgroups, so the action
of G on Z is free. Therefore Z is a principal G-bundle with base Z/G. As

G is itself a contractible space on which G acts freely, there is a G-map
from Z to G. O

Proof of Proposition 1. In the diagram of the proposition the right vertical
arrow is the Thom isomorphism of [13]. The lower horizontal arrow is

the standard isomorphism which is valid for any locally compact Hausdorff
topological space.
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