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Remarquons que dans cette preuve on a utilisé seulement le fait que
@® est un courant positif fermé F-invariant et numériquement effectif; sa
provenance d’une courbe entiére est inessentielle. Remarquons aussi (voir
[De2]) que Deffectivité numérique est automatique s1 @y = 0.

Les théoremes 1 et 2 et la relation Ky = T3 ® Nz, ol Kx est le fibré
canonique de X, impliquent:

COROLLAIRE 1. ¢(X) [®] > 0. L]

Si @ était une courbe algébrique lisse D on aurait la formule d’adjonction
c1(X) - [D] = [D)* + x(D) et le corollaire serait conséquence de [D}> > 0
(effectivité numérique) et (D) > 0 (inégalité tautologique). Naivement, dans
tout ce qui précéde on a donc remplacé la formule d’adjonction par sa version
feuilletée c¢1(X) = ci(Nx) + ci1(TF), [D]? par ¢;(NF) - [@], et x(D) par
c((Tr) - [P].

COROLLAIRE 2. X n’est pas de type général. [

En effet, le fibré canonique d’une surface de type général est presque
ample (i.e., ample hors d’une collection finie de courbes rationnelles d’auto-
intersection négative, qui sont négligeables car contractibles), et donc ([Mc])
on aurait ¢;(X) - [®] < 0.

Ceci permet d’éviter, dans la preuve de McQuillan de la conjecture
de Green-Griffiths, le recours au théoreme de semi-positivité générique
de Miyaoka [Mi]. Pour prouver cette conjecture McQuillan considere une
courbe entiere fy: C — Xy a valeurs dans une surface de type général. Si
c%(XO) > 2(Xp), 1l construit un revétement ramifié X — Xy sur lequel le
relevé f: C — X est tangente a un feuilletage a singularités réduites. Puisque
X est encore de type général, le cordllaire 2 implique que f, et donc fp, est
dégénérée.

4. FEUILLETAGES SUR LE PLAN PROJECTIF

Dans cette dernicre section nous allons démontrer le théoréme énoncé dans
I"introduction. Soit donc F un feuilletage holomorphe de CP? dont toutes
les singularités sont non nilpotentes. On a T = O(1 —d) et Ny = OQ2+d),
ou (par définition) d est le degré de F.
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Certaines singularités peuvent ne pas étre réduites, notamment celles
engendrées par un champ de vecteurs dont la partie linéaire admet les valeurs
propres 1 et A € QT. Si A ¢ Nt U N%L la singularité est linéarisable, si au
contraire A € Nt U N—I; sa forme normale (Poincaré-Dulac, voir [CS]) est

(nz + aw)ydw —wdz =0

ot a € {0,1} et n€ {A, {} NNT.

Soit donc X = CP? la résolution (minimale) de ces singularités. Un
calcul simple et explicite montre que chaque composante connexe du diviseur
exceptionnel de 7 est une chaine de courbes rationnelles qui contient une
(—=1)-courbe qui est soit invariante par le feuilletage relevé G (cas non
linéarisable) soit transverse a ce méme feuilletage (cas linéarisable). Les autres
courbes de la chaine sont § -invariantes.

AeENTUL  a=1

AEN+UNL+,a:o

1
ANENT U

Décomposons le diviseur exceptionnel de 7 comme FUD, ou F = Ujl: , Fj
est ’union des (—1)-courbes qui ne sont pas G-invariantes. On a alors |[Br]

I

Tg = 7 (TF) ® OF)
Ng = T (Nr) @ O(—2F — D).

Soit ¥ € ALL(X) le courant positif fermé engendré par le relevé de
f: C — CP? sur X. On suppose que f n’est pas dégénérée, et on normalise
Y de maniere telle que c; (W*(O(l))) -[¥] = 1. On obtient alors

o
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{
a(Tg)- W1 =1-d+> [F]-[¥]

j=1

[
cl(Ng) - [®] <2+d—2) [Fj]-[¥]

j=1

(car [¥]-[D] > 0), et les théoremes 1 et 2 impliquent

et enfin

[
Y IF ¥ >d—1

j=1

[
2) IF]-¥1<d+2

j=1

Ce qui prouve le théoreme.

REMARQUE. Sans hypothése sur les singularités de F le théoreme devient

évidemment faux, on peut par contre espérer affaiblir I’hypothése d > 5 (par
d>27).

[De2]

[GG]
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