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L'observation fondamentale est alors la suivante: puisque [0(n)]2 > 0 pour

tout n >0,la somme Yq=o<lui aPParaît ci-dessus est majorée par

[O]2 —j-zy(0,z?)2 pour tout n > 0, et donc
dp

7y(0(//). cf^) 0 pour n —> +00

Le feuilletage T{n) sur X(n) a (au plus) deux singularités non petites, qet
q^\ et de l'inégalité tautologique raffinée on déduit

cx(J»• [<&«] > —f{3>(n),qf) - v(&n\

Mais puisqu'on éclate toujours des singularités réduites on a »
(7r(n))*(7y) (où est la projection de sur X), et donc c\(Tjrw)- [0(n)]

c\(Tf) • [O]. On en déduit que

ci(7»-[O]>0.
C'est le théorème 1. Tout cela démontre (s'il en était besoin) que les

éclatements ne servent pas seulement à résoudre des singularités...

3. Le degré du fibre normal sur la courbe entière

Avec les mêmes hypothèses et notations qu'auparavant, nous allons ici
démontrer le résultat suivant, qui précise [Me, II. 1.4.1].

Théorème 2. c{(Njr) • [O] > 0

On va d'abord se débarrasser de la composante algébrique
Puisque T est à singularités réduites, C U;=1 Q est une

courbe à croisements normaux : elle est T-invariante, donc ses singularités sont

contenues dans Sing{T) et au voisinage d'une de ses singularités elle coïncide
avec l'union des séparatrices de T. On a C\(Njr) [Cj] — [Cj]2 +Z(C;, T), où

Z(Cj,T) est la multiplicité totale des singularités de T le long de C) [Br,
lemme 3], et cette multiplicité est évidemment au moins égale à

Donc c\{Njr) • [Cj] > [Cj] - [C] et par conséquent

C\(NJT) • [Ofl/g] > • [C]

D'autre part, la classe [O] est numériquement effective et donc [Oa/g] • [C] >
diff] ' [O]. On en déduit:

C\(Njr) • [O] > Cj (Njr 0 O(-Cy) • [®diff]
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Notre but est donc de démontrer

ci(^®O(-Q)-[%]>0.
Pour cela, nous allons d'abord construire une 2-forme fermée 0 qui représente
la classe de Chern de Njr®0(—C), d'après la méthode classique qui est à la
base de tous les théorèmes d'annulation ou d'indice (Baum-Bott, Camacho-

Sad, etc.).

On peut choisir un recouvrement ouvert {Uk{ de X, des 1-formes

logarithmiques G £2!(log C){Uk) et des (l,0)-formes ßk G Al>0(Uk) telles

que :

i) dans Uk, T est représenté par fkÇlk 0, où fk est une équation de C

dans Uk (donc fk Qk G Ol(Uk) est une 1-forme holomorphe à singularités
isolées) ;

ii) chaque Uk contient au plus une singularité de T ;

iii) d£lk ft A Q.k dans Uk\Vk, où Vk C Uk est disjoint de Ut pour
tout l^k.

Il est clair que de tels {Uk,Qk, ßk} existent, voici la construction explicite
qu'on utilisera plus loin. Au voisinage d'un point régulier T est donné (en

coordonnées convenables z,w) par dz — 0, on peut choisir alors Q dz

ou £2 —, selon la structure de C au voisinage du point, et ß 0. Au

voisinage d'un point singulier T est donné par adw — bdz 0, avec a et b

holomorphes et {a b 0} {(0,0)}. Si le point singulier n'appartient pas
à C on choisira £2 adw — bdz et

ß — F • a\
9 {àdz + b dw),

\a\ + \b\

où F est une fonction C°° réelle qui s'annule au voisinage du point singulier
et qui vaut 1 hors d'un voisinage (aussi petit que l'on veut) de ce même

point. Si le point singulier est un point double de C, on peut supposer que
dans les coordonnées fixées on a C {zw 0}, et donc a est divisible par
z et b par w car C est T-invariante. On choisira alors Q - ^ ^ ^ et

- + b -ß F-~- S ~(àdz + b dw).
\a\2 + \b\2

b

Le cas intermédiaire où le point singulier appartient à un point lisse de C est

laissé au lecteur.

Les ouverts Uk seront donc des petites boules centrées sur des points

réguliers ou singuliers, et Vk C Uk des boules encore plus petites, ou même

vides dans le cas des points réguliers.
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Sur chaque intersection Uk H Uj on a

Qk gkjQj gkj G ö*(Uk n Uj)

et {gkj} G Hl(X. Ö*) est un cocycle définissant le fibré Njr0Ö{—C). Pour se

convaincre de cela, notons L le fibré défini par {%}. Le fibré L 0 0(C) est

donc donné par le cocycle {gkjj}. Les relations fk Qk gkj j fj Ulj montrent

que les fkQ.k définissent une 1-forme holomorphe à valeurs dans L 0 O(C), et

plus exactement une section de AOf 0 L 0 G(C) car les fkQk engendrent T.
Cette section n'a aucun zéro, puisque chaque fk£lk est à singularités isolées,

donc elle trivialise Njr 0 L 0 (9(C), d'où L Njr 0 O(-C).
En différentiant la relation ci-dessus et grâce à dQk ßk A Qk, qui est

satisfaite sur les intersections, on obtient

— ßk-ßj + 7
9kj

où jkj 1 A' '"(Uk H Uj)s'annulentsur T et forment un cocycle. On peut
trivialiser ce cocycle, car on est en train de travailler avec des formes C°° :

Ikj 1k - lj, 1k AL0(Uk),Jk\jr =0. Ainsi

- (ßk + 1— (ßj +
9kj

et donc la 2-forme fermée © G A2(X) localement définie par

© J~.d(ßk+ 1k)
l'ai

représente C]{Njr ® 0{-C)). Remarquons qu'elle n'est pas (en général) de

type (1,1).

Pour évaluer cßNp®O(-C)) [<D diffilfaut intégrer 0 sur la courbe
entière /, ou mieux il faut intégrer 0 sur la lamination Supply) par
rapport à la mesure transverse invariante Mais T 0 et dßk= 0
hors de Vk, grâce à dQk ßk A Q.k,etl'intégrale est donc localisée au
voisinage des points singuliers. L'expression <1 est sans ambiguïté et
avec ces notations on peut résumer la discussion dans le lemme suivant.

LEMME 4. On a

c\(Njr®C>(—Q) • [<t>rf,y] — $>dijf(dßk),

où lasomme est sur tous les k tels que Uk est centré sur une singularité de
T dans K(kff.



210 M. BRUNELLA

Tout cela marche sans restriction sur les singularités de T, pourvu que
C soit à croisements normaux. Mais notre feuilletage n'a que des singularités
réduites, et en plus, d'après le lemme 4, seules celles dans Kdiff nous
intéressent. C'est le moment d'exploiter à fond le fait que la mesure transverse

Hdiff associée à n'a pas d'atomes. On renvoie à [CS] et [MR] pour une

description de la structure qualitative des singularités réduites.

Si g G Sing(J^) est un nœud-col, on voit sans peine que toute feuille
(locale) de T s'accumule sur la séparatrice forte, sauf la séparatrice faible
(si elle existe). Pour voir cela, reprenons la forme normale de Dulac d'un
nœud-col de multiplicité d, dans laquelle on supposera de plus que F 0

(ce qui est toujours possible dans des coordonnées formelles, voir [MR]) :

z( 1 + Xwd~1 dw — wddz 0

Par intégration directe, on trouve que les feuilles sont les graphes des fonctions

(multiformes si À n'est pas un entier)

z cwxe (d-Dwd-i
5 cGC,

plus la séparatrice forte {w 0}. Pour c 0 on obtient la séparatrice faible

{z 0}, et toute autre feuille contient {w 0} dans son adhérence. On

trouve aussi que l'holonomie de {w 0} est du type

w ^ w F 2iri wd + o(wd).

Ces propriétés qualitatives de T persistent quand F ^ 0 (sauf l'existence
de la séparatrice faible), voir [MR] pour plus de détails. L'holonomie de la

séparatrice forte est assez riche pour forcer toute mesure transverse invariante
à se concentrer sur la même séparatrice, et donc à être atomique. Bref, Kdijf

ne contient pas de nœuds-cols.

Des considérations holonomiques du même genre excluent les singularités
engendrées par un champ de vecteurs dont le quotient des valeurs propres
n'est pas réel et montrent donc que toute singularité p de T dans Kdiff est

d'un des deux types suivants:

I) au voisinage de p, T est engendré (en coordonnées convenables) par
(1 + )zdw — (À + .)wdz, avec À G R+ \ Q+ ; le théorème de

linéarisation de Poincaré permet même de linéariser cette 1-forme;

II) comme dans I) mais avec À G R_ ; si À G Q~ la singularité est sans

doute linéarisable, si À G R~ \ Q~ elle l'est formellement mais pas
nécessairement analytiquement.
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LEMME 5. Dans le cas I) on a

Preuve. Si C a un point double en p on a ^ ^ - À- fermée

et donc on peut prendre ßk 0. Si p ^ C on a Qk zdw — Àtcdz et

ßk m^^|2(I& + Xwdw) (et si C a une seule branche à travers p
on a la même expression mais avec 1 ou À à la place de 1 + À). On peut

supposer que Uk est un petit bidisque {\z\ < e.\w\ < e} autour de p, avec

Sk dUk (lissé aux coins) transverse à T. Donc C 7Ff\Sk est un feuilletage
réel orienté de dimension 1 et sans singularités (l'orientation étant induite par
celle des feuilles complexes de 2F\uk), et pdijj induit une mesure transverse

£-invariante qu'on notera par la même lettre. Par Stokes, calculer O

revient à calculer l'intégrale de le long de C par rapport à pdlfj. Mais

ßk I

_
(1 + A) dz

ct
ßk_

27ri\{\z\=e.\w\<e}njr 27ri z 2ni
(1 + À ') dw

{|u;|=e,|£|<e}n^" 2TTZ W

sont positives le long de £, d'où la conclusion cherchée (avec stricte
inégalité).

Lemme 6. Dans le cas II) on a

Re O= 0
" Z7TI

Preuve. Comme dans le lemme précédent, il suffit considérer le cas

p £ C, les autres cas étant presque identiques. Donc £lk adw - bdz, avec
a z( 1 + b Xw (1 + À G R~ et ßk Fk (cidz + b dw).
Si (az + bw)(0^ 0) 0 (i.e. À —1) on peut en réalité choisir ßk holomorphe
(dans tout Uk ce qui donne bien sûr &diff(dßk) 0 : il suffit prendre
ßk — Adz + Bdw, où A et B sont des fonctions holomorphes satisfaisant
az+bw Aa+Bb. On supposera donc À^-l. Cette fois-ci le feuilletage n'est
pas transverse à des petites sphères autour du point singulier, et c'est justement
sur cela qu'on va s'appuyer. Soit 71 le feuilletage réel 1-dim tangent à T dans
Uk \ {p} engendré par le noyau de p\T, où 77 Im[^^_ (ödz + ^dw)].
On vérifie aisément que sur chaque séparatrice {z 0} et {w 0} ce
feuilletage 71 est de type radial, tandis que hors des séparatrices les feuilles
de 71 "glissent" à côté de p. Plus exactement, on peut choisir le bidisque Uk
de manière telle que :
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a) dUk est l'union de deux tores solides fermés T\, T2 dont les intérieurs
sont transverses à 1Z ;

b) dT\ dT2 est formé des points de dUk où 1Z est tangent extérieurement
à Uk ;

c) les feuilles de 1Z dans Uk et hors des séparatrices établissent un difféo-
morphisme cj) entre T\ et T2 privés des intersections avec les séparatrices.

Sur 7j et T2, T induit des feuilletages orientés C\ et C2 avec mesures
transverses invariantes pi et p2. Le difféomorphisme <fi échange ces deux

feuilletages, préservant les mesures transverses mais renversant les orientations.
On a ^{rj\c2) p\cx, car p\p est fermée et s'annule sur Té, et donc

(ß*(lmßk\c2) toÂki • Tout cela entraîne que l'intégrale de lmßk le long
de C\ par rapport à fi\ est opposée à celle le long de C2 par rapport à ji2
(le fait que <fi n'est pas défini entre les intersections avec les séparatrices n'a
aucune importance, car ces séparatrices sont de mesure nulle). D'après Stokes

on a alors O^j(ImJ^) 0.

Il nous semble qu'on devrait pouvoir démontrer, dans ce dernier lemme,
Y annulation de ^>dijf{dßk) et non seulement de sa partie imaginaire. Dans [Me,
II. 1.4] on trouve des estimations en fonction du nombre de Lelong de <E>^

en p (qui est lié au nombre de la section précédente), et il est bien

possible que ce nombre s'annule toujours dans le cas II), puisque dans ce cas

les feuilles du feuilletage glissent à côté de p (tandis que dans le cas I) elles

vont "tout droit" vers p). On vérifie tout cela dans le cas linéarisable, par
calcul direct, mais nous ne savons pas si les nombres en question sont des

invariants formels (puisque nous ne savons pas ce qu'est la transformée d'une

mesure par un difféomorphisme formel).
En tout cas, les lemmes 4, 5 et 6 suffisent pour démontrer que

c\(Nf ® Ö(—C)) • [Qdiff] > 0 et donc le théorème 2. On a même l'inégalité
stricte dès que Kdijj contient au moins une singularité de type I) qui ne soit

pas un point double de C.

P

w

L^T

l\ G £\
h h G P>2
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Remarquons que dans cette preuve on a utilisé seulement le fait que

O est un courant positif fermé .F-invariant et numériquement effectif; sa

provenance d'une courbe entière est inessentielle. Remarquons aussi (voir

[De2]) que l'effectivité numérique est automatique si <&aig — 0-

Les théorèmes 1 et 2 et la relation Kx T^r ® où Kx est le fibré

canonique de X, impliquent:

Corollaire 1. ctyX) • [O] > 0.

Si O était une courbe algébrique lisse D on aurait la formule d'adjonction

ci CO • [D] [D]2 + x(P) et Ie corollaire serait conséquence de [D]2 > 0

(effectivité numérique) et xiP) —
0 (inégalité tautologique). Naïvement, dans

tout ce qui précède on a donc remplacé la formule d'adjonction par sa version

feuilletée c\(X) + Ci(7», [D]2 par c\(Njd) • [O], et xiP) Par

Gi(7»-[0].

COROLLAIRE 2. X n'est pas de type général.

En effet, le fibré canonique d'une surface de type général est presque
ample (i.e., ample hors d'une collection finie de courbes rationnelles d'auto-
intersection négative, qui sont négligeables car contractiblcs), et donc ([Me])
on aurait cj(X) • [O] < 0.

Ceci permet d'éviter, dans la preuve de McQuillan de la conjecture
de Green-Griffiths, le recours au théorème de semi-positivité générique
de Miyaoka [Mi]. Pour prouver cette conjecture McQuillan considère une
courbe entière /0: C Xo à valeurs dans une surface de type général. Si

c](Xq) > C2CG), d construit un revêtement ramifié X —» Xo sur lequel le

relevé /: C —> X est tangente à un feuilletage à singularités réduites. Puisque
X est encore de type général, le corbllaire 2 implique que /, et donc /o, est

dégénérée.

4. Feuilletages sur le plan projectif

Dans cette dernière section nous allons démontrer le théorème énoncé dans

l'introduction. Soit donc T un feuilletage holomorphe de CP2 dont toutes
les singularités sont non nilpotentes. On a 7> (9(1 - d) et Nj=- 0(2-h d),
où (par définition) d est le degré de T.
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