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[’observation fondamentale est alors la suivante: puisque [®™]* > 0 pour

tout n > 0, la somme Z;l:_ol ... qui apparait ci-dessus est majorée par
2

(D] — glp-u(d), p)? pour tout n > 0, et donc

(@™ ¢y — 0 pour n — —400.

Le feuilletage F™ sur X® a (au plus) deux singularités non petites, q(l”) et
qg”), et de I'inégalité tautologique raffinée on déduit

Cl(T]:(n)) . [(I)(n)] > _1/(q)(n)7 q(ln)) . V((I)(H), q(zn)) .

Mais puisqu'on éclate toujours des singularités réduites on a Trm =
(Y (T£) (ot 7™ est la projection de X™ sur X), et donc ¢;(Trwm)-[@™] =
ci(Tx) - [®]. On en déduit que

ci(Tr) [@] = 0.

C’est le théoreme 1. Tout cela démontre (s’il en était besoin) que les
éclatements ne servent pas seulement a résoudre des singularités. ..

3. LE DEGRE DU FIBRE NORMAL SUR LA COURBE ENTIERE

Avec les mémes hypotheses et notations qu’auparavant, nous allons ici
démontrer le résultat suivant, qui précise [Mc, 11.1.4.1].

THEOREME 2. ¢ |(Nr) - [®]>0.

On va d’abord se débarrasser de la composante algébrique @y, =
Zj.vzl Ajbc;. Puisque F est a singularités réduites, C = UN:1 C; est une
courbe a croisements normaux : elle est F -invariante, donc ses singularités sont
contenues dans Sing(F) et au voisinage d’une de ses singularités elle coincide
avec I'union des séparatrices de F. On a ¢;(Nx)-[Cj] = [Cj]2 +Z(C;, F), ou
Z(C;, F) est la multiplicité totale des singularités de F le long de C; [Br,
lemme 3], et cette multiplicité est évidemment au moins égale a [Cj]-> ", #j[Ck].
Donc ¢i(Ng) - [C;] = [C;] - [C] et par conséquent

ClNF) - [Pagl > [Pug] - [C].

D’autre part, la classe [®@] est numériquement effective et donc [@ue]- [C] >
~[Dyig] - [C]. On en déduit:

CiNF) - [P] = ci(Nr & O(=C)) - [Puy] .
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Notre but est donc de démontrer
Ve @ O(=0)) - [Pyip] > 0.

Pour cela, nous allons d’abord construire une 2-forme fermée © qui représente
la classe de Chern de N ® O(—C), d’apres la méthode classique qui est a la
base de tous les théoremes d’annulation ou d’indice (Baum-Bott, Camacho-
Sad, etc.).

On peut choisir un recouvrement ouvert {U;} de X, des 1-formes
logarithmiques Q; € Q'(log C)(U,) et des (1,0)-formes F; € AMO(Uy) telles
que:

1) dans Uy, F est représenté par f; Qp = 0, ot f; est une équation de C
dans U (donc fi Q¢ € Q'(Uy) est une 1-forme holomorphe a singularités
1solées);

11) chaque U contient au plus une singularité de F;

i) dQp = O N Q dans U \ Vi, ot V, C U, est disjoint de U, pour
tout [ # k.

11 est clair que de tels {Uy, 4, Oi} existent, voici la construction explicite
qu’on utilisera plus loin. Au voisinage d’un point régulier F est donné (en
coordonnées convenables z,w) par dz = 0, on peut choisir alors Q = dz
ou Q = % selon la structure de C au voisinage du point, et § = 0. Au
voisinage d’un point singulier F est donné par adw — bdz = 0, avec a et b
holomorphes et {a = b =0} = {(0,0)}. Si le point singulier n’appartient pas
a C on choisira Q = adw — bdz et

ﬁ:F~f§E@7@&+ﬁmm,
|a|” + [b]
ou F est une fonction C*° réelle qui s’annule au voisinage du point singulier
et qui vaut 1 hors d’un voisinage (aussi petit que ’on veut) de ce méme
point. Si le point singulier est un point double de C, on peut supposer que
dans les coordonnées fixées on a C = {zw = 0}, et donc a est divisible par

z et b par w car C est F-invariante. On choisira alors € = %% — —f;fi—‘ et
a,—%+b,— L _
B=F- ¢ . w2 Y(@adz+ bdw).
la]” +1b]

Le cas intermédiaire ou le point singulier appartient a un point lisse de C est
laissé au lecteur.

Les ouverts U, seront donc des petites boules centrées sur des points
réguliers ou singuliers, et Vi C U, des boules encore plus petites, ou méme
vides dans le cas des points réguliers.
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Sur chaque intersection Uy N U; on a
Q. = g/\ij gij € O*(U/\ M Uj)

et {gi} € H'(X,O*) est un cocycle définissant le fibré Ny ® O(—C). Pour se
convaincre de cela, notons L le fibré défini par {gy}. Le fibré L® O(C) est
donc donné par le cocycle {gkj%}. Les relations f; £ = gkj%' /i €; montrent
que les f; Q; définissent une 1-forme holomorphe a valeurs dans L& O(C), et
plus exactement une section de N3 ® L ® O(C) car les f; £, engendrent F .
Cette section n’a aucun zéro, puisque chaque f; {; est a singularités isolées,
donc elle trivialise N ® L ® O(C), d’ou L = Nr ® O(—C).

En différentiant la relation ci-dessus et grace a d€ = [Or A L), qui est

satisfaite sur les intersections, on obtient
dgy
— = O — B+
Gkj

ou vy € AU N U;) s’annulent sur F et forment un cocycle. On peut
trivialiser ce cocycle, car on est en train de travailler avec des formes C°° :

Y =% — > w €AY WU, W

£ =0. Ainsi

dgij
— = (B + ) — (G + )
Gkj

et donc la 2-forme fermée © € A*(X) localement définie par

1
0= o -d(Br + Vi)
i

représente ¢;(Ny @ O(—C)). Remarquons qu’elle n’est pas (en général) de
type (1,1).

Pour évaluer ¢|(Nx @ O(=C)) - [Dyyr] il faut intégrer © sur la courbe
entiere f, ou mieux il faut intégrer © sur la lamination Kair = Supp(@gy) par
rapport a la mesure transverse invariante /. Mais dyi|z =0 et dB|r =0
hors de Vi, grice a dQ; = B N Q, et I'intégrale est donc localisée au
voisinage des points singuliers. [’expression D4 (dBy) est sans ambiguité et
avec ces notations on peut résumer la discussion dans le lemme suivant.

LEMME 4. On a

1Ny ® O(—C)) - [®yyp] = 2%” > ®udBy),

ou la somme est sur tous les k tels que Uy est centré sur une singularité de
F dans Kd,ﬁ. L]
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Tout cela marche sans restriction sur les singularités de F, pourvu que
C soit a croisements normaux. Mais notre feuilletage n’a que des singularités
réduites, et en plus, d’aprés le lemme 4, seules celles dans Ky nous
intéressent. C’est le moment d’exploiter a fond le fait que la mesure transverse
gy associ€e a Dy n’a pas d’atomes. On renvoie a [CS] et [MR] pour une
description de la structure qualitative des singularités réduites.

Si p € Sing(F) est un nceud-col, on voit sans peine que toute feuille
(locale) de F s’accumule sur la séparatrice forte, sauf la séparatrice faible
(s1 elle existe). Pour voir cela, reprenons la forme normale de Dulac d’un
neeud-col de multiplicité d, dans laquelle on supposera de plus que F =0
(ce qui est toujours possible dans des coordonnées formelles, voir [MR]):

z(1 + ™ Ydw — widz = 0.

Par intégration directe, on trouve que les feuilles sont les graphes des fonctions
(multiformes si A n’est pas un entier)
N o——
z=cw’e @-huwi=l ceC,
plus la séparatrice forte {w = 0}. Pour ¢ = 0 on obtient la séparatrice faible

{z = 0}, et toute autre feuille contient {w = 0} dans son adhérence. On
trouve aussi que ’holonomie de {w = 0} est du type

w— w + 21w’ + o(w?).

Ces propriétés qualitatives de F persistent quand F # O (sauf I’existence
de la séparatrice faible), voir [MR] pour plus de détails. L’holonomie de la
séparatrice forte est assez riche pour forcer toute mesure transverse invariante
a se concentrer sur la méme séparatrice, et donc a étre atomique. Bref, Ky
ne contient pas de nceuds-cols. ;

Des considérations holonomiques du méme genre excluent les singularités
engendrées par un champ de vecteurs dont le quotient des valeurs propres
n’est pas réel et montrent donc que toute singularit€ p de F dans Ky est
d’un des deux types suivants:

I) au voisinage de p, F est engendré (en coordonnées convenables) par
(1+..)zdw— A+ ...)wdz, avec A € RT \ QT ; le théoreme de
linéarisation de Poincaré permet méme de linéariser cette 1-forme;

II) comme dans I) mais avec A € R™; si A € Q™ la singularité est sans
doute linéarisable, si A € R™ \ Q7 elle I'est formellement mais pas
nécessairement analytiquement.
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LEMME 5. Dans le cas 1) on a

q)dlﬂ(_ﬁﬁ) > 0.

Preuve. Si C a un point double en p on a £ = %“— — /\%5 fermée
et donc on peut prendre Gy = 0. Si p ¢ C on a & = zdw — A\wdz et
O = Fi ﬁ%(zdz + Mudw) (et si C a une seule branche a travers p
on a la méme expression mais avec 1 ou A a la place de 1+ ). On peut
supposer que U est un petit bidisque {|z| < €, |w| < €} autour de p, avec
Sy = 0Uy (lissé aux coins) transverse a F . Donc £ = F NS, est un feuilletage
réel orienté de dimension 1 et sans singularités (I’orientation étant induite par
celle des feuilles complexes de F|y, ), et pgy induit une mesure transverse
L-invariante qu’on notera par la méme lettre. Par Stokes, calculer q)dwc(‘ziﬁ—‘li)

revient a calculer I’intégrale de %7 le long de L par rapport a gy . Mais

3 A+ Mdz ot ﬁ _(1+/\_1)dw
27l {|e)=e.|w|<e}nF 27 2 27l {Jw)=¢ 7| <e}nF  2mi w
sont positives le long de £, d’ot la conclusion cherchée (avec stricte

inégalité). [

LEMME 6. Dans le cas II) on a

Re (Ddzﬁ” ﬁk

Preuve. Comme dans le lemme précédent, il suffit considérer le cas
p & C, les autres cas étant presque identiques. Donc Q; = adw — bdz, avec
a=z(I+..), b= w(l+...), NeER et B = F, %52 (adz+bdw).

|al*+|b]*
Si (a;+by,)(0,0) =0 (i.e. A= -—1) on peut en réalité choisir Bx holomorphe
(dans tout Uy), ce qui donne bien siir Dy (dB) = 0: il suffit prendre

Br = Adz+ Bdw, ou A et B sont des fonctions holomorphes satisfaisant
a.+b,, = Aa+Bb. On supposera donc A # —1. Cette fois-ci le feuilletage n’est
pas transverse a des petites sphéres autour du point singulier, et ¢’est justement
sur cela qu’on va s’appuyer. Soit R le feuilletage réel 1-dim tangent a F dans
Ui \ {p} engendré par le noyau de 7|, ot n = Im[, a, :[)IZI (adz + bdw)].
On vérifie aisément que sur chaque séparatrice {z = 0} et {w = 0} ce
feuilletage R est de type radial, tandis que hors des séparatrices les feuilles

de R “glissent” a c6té de p. Plus exactement, on peut choisir le bidisque Uy
de maniere telle que:
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a) OUy est I'union de deux tores solides fermés 77, T, dont les intérieurs
sont transverses a R ;

b) 0T, = 0T, est formé des points de JU;, ol R est tangent extérieurement
a Uy,

c) les feuilles de R dans Uy et hors des séparatrices établissent un difféo-
morphisme ¢ entre 7 et T, privés des intersections avec les séparatrices.

w

\ T2\
y R
\ dx) =y Ly € L
—_— h €L,
T,
U, <
D z

Sur 77 et T, F induit des feuilletages orientés L; et L, avec mesures
transverses invariantes p; et u,. Le difféomorphisme ¢ échange ces deux
feuilletages, préservant les mesures transverses mais renversant les orientations.
On a ¢*(n|z,) = nle,, car n|F est fermée et s’annule sur R, et donc
¢*(Im Br|z,) = Im Bi|z, . Tout cela entraine que I'intégrale de Im 3, le long
de L, par rapport a pu; est opposée a celle le long de L, par rapport a 1
(le fait que ¢ n’est pas défini entre les intersections avec les séparatrices n’a
aucune importance, car ces séparatrices sont de mesure nulle). D’apres Stokes
on a alors @up(Imdf) =0. [

Il nous. semble qu’on devrait pouvoir démontrer, dans ce dernier lemme,
I’annulation de ®7(df) et non seulement de sa partie imaginaire. Dans [Mc,
I1.1.4] on trouve des estimations en fonction du nombre de Lelong de @
en p (qui est lié¢ au nombre v(Pypr, p) de la section précédente), et il est bien
possible que ce nombre s’annule toujours dans le cas II), puisque dans ce cas
les feuilles du feuilletage glissent a c6té de p (tandis que dans le cas I) elles
vont “tout droit” vers p). On vérifie tout cela dans le cas linéarisable, par
calcul direct, mais nous ne savons pas sl les nombres en question sont des
invariants formels (puisque nous ne savons pas ce qu’est la transformée d’une
mesure par un difféomorphisme formel).

En tout cas, les lemmes 4, 5 et 6 suffisent pour démontrer que
ciNr @ O(=C)) - [Pyl > 0 et donc le théoreme 2. On a méme I’inégalité
stricte dés que Ky contient au moins une singularité de type I) qui ne soit
pas un point double de C.
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Remarquons que dans cette preuve on a utilisé seulement le fait que
@® est un courant positif fermé F-invariant et numériquement effectif; sa
provenance d’une courbe entiére est inessentielle. Remarquons aussi (voir
[De2]) que Deffectivité numérique est automatique s1 @y = 0.

Les théoremes 1 et 2 et la relation Ky = T3 ® Nz, ol Kx est le fibré
canonique de X, impliquent:

COROLLAIRE 1. ¢(X) [®] > 0. L]

Si @ était une courbe algébrique lisse D on aurait la formule d’adjonction
c1(X) - [D] = [D)* + x(D) et le corollaire serait conséquence de [D}> > 0
(effectivité numérique) et (D) > 0 (inégalité tautologique). Naivement, dans
tout ce qui précéde on a donc remplacé la formule d’adjonction par sa version
feuilletée c¢1(X) = ci(Nx) + ci1(TF), [D]? par ¢;(NF) - [@], et x(D) par
c((Tr) - [P].

COROLLAIRE 2. X n’est pas de type général. [

En effet, le fibré canonique d’une surface de type général est presque
ample (i.e., ample hors d’une collection finie de courbes rationnelles d’auto-
intersection négative, qui sont négligeables car contractibles), et donc ([Mc])
on aurait ¢;(X) - [®] < 0.

Ceci permet d’éviter, dans la preuve de McQuillan de la conjecture
de Green-Griffiths, le recours au théoreme de semi-positivité générique
de Miyaoka [Mi]. Pour prouver cette conjecture McQuillan considere une
courbe entiere fy: C — Xy a valeurs dans une surface de type général. Si
c%(XO) > 2(Xp), 1l construit un revétement ramifié X — Xy sur lequel le
relevé f: C — X est tangente a un feuilletage a singularités réduites. Puisque
X est encore de type général, le cordllaire 2 implique que f, et donc fp, est
dégénérée.

4. FEUILLETAGES SUR LE PLAN PROJECTIF

Dans cette dernicre section nous allons démontrer le théoréme énoncé dans
I"introduction. Soit donc F un feuilletage holomorphe de CP? dont toutes
les singularités sont non nilpotentes. On a T = O(1 —d) et Ny = OQ2+d),
ou (par définition) d est le degré de F.
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