
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 45 (1999)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: COURBES ENTIÈRES ET FEUILLETAGES HOLOMORPHES

Autor: Brunella, Marco

Kapitel: 2. L'INÉGALITÉ TAUTOLOGIQUE ET SES CONSÉQUENCES

DOI: https://doi.org/10.5169/seals-64446

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-64446
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


202 M. BRUNELLA

À remarquer que le quotient entre le coefficient de 6n0 et celui de 6l0 est

égal au quotient entre la valeur propre de T en (0, 0) le long de No et celle
le long de Lo.

Si dans le même exemple on prend À G R (et À ^ Q pour avoir des feuilles
transcendantes) les feuilles de T sont denses sur des hypersurfaces réelles et

la dynamique de T sur ces hypersurfaces ressemble à celle des feuilletages
linéaires irrationnels des tores. Le courant O sera alors uniformément distribué

sur une de ces hypersurfaces.

Enfin, on peut construire de nouveaux exemples à partir des précédents par
des transformations birationnelles. On aura ainsi des exemples où la courbe

entière passe une infinité de fois à travers une singularité du feuilletage.

2. L'inégalité tautologique et ses conséquences

On continue avec les hypothèses et les notations de la section précédente :

• X est une surface algébrique lisse;

• T est un feuilletage holomorphe sur X, à singularités isolées;

• / : C —» X est une courbe entière non dégénérée et tangente à T ;

• O G A1,1 (A)' est un courant positif fermé associé à /.
En plus, on supposera que les singularités de T sont réduites au sens

de [Se] (voir aussi [CS]) : au voisinage de chaque point singulier, T est

engendré par un champ de vecteurs dont la partie linéaire a pour valeurs

propres 1, A, avec À ^ Q+ .Si À ^ 0 le point singulier est simple, sinon

c'est un nœud-col. Ainsi chaque singularité réduite a une multiplicité d > 1, et

d > 1 si et seulement si la singularité est un nœud-col. Une séparatrice d'une

singularité est une courbe analytique définie au voisinage de la singularité,

tangente au feuilletage et passant par la singularité. On utilisera le fait qu'une
singularité simple a exactement deux séparatrices (l'une transverse à l'autre),
tandis qu'un nœud-col a une "séparatrice forte" tangente à l'espace propre
de valeur propre 1 et, parfois, une "séparatrice faible" tangente à celui de

valeur propre 0 [CS], [MR]. L'étude des feuilletages à singularités réduites

est justifiée par le théorème de réduction des singularités de Seidenberg [Se] :

tout feuilletage peut être transformé en un feuilletage à singularités réduites

par une suite d'éclatements.

Du point de vue global, on peut associer à T (et malgré ses singularités)

un fibré tangent 7> et un fibré normal Njr : dans le langage des diviseurs,

7> (resp. N*jr, dual de Nj?) est représenté par la différence entre le diviseur



COURBES ENTIÈRES ET FEUILLETAGES HOLOMORPHES 203

des zéros et le diviseur des pôles d'un champ de vecteurs méromorphe (resp.

d'une 1-forme méromorphe) qui engendre T. Nous renvoyons à [Br] pour

les propriétés les plus basiques de ces fibrés (par exemple, leur comportement

par éclatements).

Dans cette section nous allons esquisser, d'après [Me], la preuve de

l'inégalité suivante.

THÉORÈME 1 [Me, §11.3]. ct(7» • [O] > 0

En fait, nous nous contenterons de déduire cette inégalité de Y inégalité

tautologique raffinée [Me, II.3.3.2], dont la preuve est (presque) indépendante

du feuilletage et sort un peu du cadre de ce texte.

Soit PTX la projectivisation du fibré tangent de X ; c'est un CP1 -fibré

sur X, dont on notera tt: PTX —» X la projection. Sur PTX on dispose du

fibré tautologique Üp7x(—1), qui a pour degré —1 sur chaque fibre de n et

qui jouera un rôle essentiel dans la suite. Rappelons la formule (tautologique)
suivante : si C C X est une courbe algébrique lisse et si C C PTX est son

relevé naturel, on a c\(0?tx(—Y)) • [C'] — x(C).
Le feuilletage T définit une section de PTX au dessus de X \ Sing(Jr),

dont l'adhérence X' C PTX est appelée graphe de T. Si p G SingtF), X'
contient toute la fibre ir~x(p). Si p est simple, X' est lisse au voisinage de

?T~x(p) et la projection tt: X' —» X s'identifie au voisinage de ir~l{p) avec
l'éclatement de I en Si p est un nœud-col de multiplicité d, X' a sur
7r~l(p) un point singulier de type Ad- \. En effet, dans des coordonnées locales
convenables le feuilletage T au voisinage d'un nœud-col de multiplicité d
est donné par l'équation (forme normale de Dulac, voir [MR] ou [CS])

[z (1 + Xiud~l)+ w F(z.w)]dw - 0.

où À G C et F est une fonction holomorphe qui s'annule en (0.0) avec ses

dérivés jusqu'à l'ordre d — 1. Les coordonnées z-w induisent au voisinage
de 7r~1 (p) des coordonnées naturelles z.w.ffi où £ ^ G CP1, et dans ces
coordonnées le graphe X' est donné par l'équation

wd[z(1 + \wd~1

+ w F(z. UO] Ç •

Un changement de variable z ^ z! ramène cette équation à la forme wd
et on voit que si £ 7^ 0 le point (0.0,0 est régulier, tandis que (0.0.0) est
une singularité Aci-\. Donc le graphe X' peut avoir des singularités, mais
cela ne nous gênera pas beaucoup, à la limite on pourra remplacer X' par sa
résolution.
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Pour tout p G Sing(JT), de multiplicité dp, soit Ep — iï~x{p), regardé

comme courbe dans X'. On vérifie aisément que dpEp est un diviseur de

Cartier, qui définit donc un fibré linéaire ö(dpEp) sur X'. Le degré de

ce fibré sur Ep est égal à —1 (car [dpEp]2 —dp dans X'). D'autre part,
1) a degré —1 sur chaque Ep et coïncide (par tautologie) avec 7r*(7y)

sur X' \{JpEp. On en déduit que

Opixi- 1)U/ K*{Tjr) (g) 0( ^2 dpEp)

peSmg(T)

On relève la courbe entière / sur PIX à travers sa "dérivée" f : C —> P7X.
Bien sûr, l'image de f est dans X' car / est tangente à T. On peut
associer à f un courant positif fermé O7 G Ax'x{X')', comme dans la section

précédente, et ir*07 <D. L'inégalité tautologique [Me, 1.0.2.5] exprime alors,

intuitivement, la "non-négativité de la caractéristique d'Euler" de [O] :

c,(CW— 1)) -[O']>0.
Voici l'idée de la preuve [Me, 1.1.1]. Soit Y la variété (de dimension 4)
obtenue à partir de X x X par éclatement de la diagonale A C X x X, et

soit Z C Y le diviseur exceptionnel de l'éclatement: c'est un CP1-fibré sur

À ~ X, canoniquement isomorphe à P7X, et le fibré 0(Z) G Pic(L) restreint à

Z coïncide avec le fibré tautologique: Oytx(—1) — 0{Z)\z. Soit/: C —» XxX
définie par f(x) (/(x),/(v)). Pour tout f G C proche de 1 on peut déformer

/ de la manière suivante: on pose /): C —> X x X, ft(x) (f(tx)J{x)). A
la différence de f, la courbe entière ft n'a pas son image contenue dans la

diagonale À, on peut donc la relever sur Y et on la notera alors ft. On associe

à ft un courant positif fermé G A1,1 (y)7 et le lemme 1 donne [OJ/Z] > 0.

Pour t 1 la courbe ft "converge" vers la courbe f : C P7X ex Z c Y,

on a donc [O7] • [Z] > 0, qui est l'inégalité cherchée.

Après avoir défini

v(<S>,p) [<&'] • > 0

on peut réécrire l'inégalité tautologique sous la forme

ci(7» •[<!>]>- X X®,/?) •

p6Sing(G")

Une singularité p est dite petite [Me, II.3.3.1] si elle est simple et

si ses deux séparatrices locales font partie de deux courbes algébriques

(nécessairement invariantes) qui s'intersectent seulement en p. Puisque / est

non dégénérée, son image n'est pas contenue dans ces courbes algébriques
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(mais, bien sûr, Supp(O) peut contenir ces courbes) et donc / ne passe pas

à travers la singularité. Cela permet d'améliorer l'inégalité tautologique, et on

obtient ainsi Y inégalité tautologique raffinée [Me, II.3.3.2] :

ei (7» -m>-
pGSING(^")

où SING(J^) c Sing(T) est l'ensemble des singularités qui ne sont pas petites.
Comme justification partielle de cette amélioration, remarquons qu'elle serait

évidente si on pouvait démontrer que 0 si p est petite. Dans le

cas où ®aig 0 (i.e. O <0^ cette annulation semble avoir lieu si le

quotient des valeurs propres de T en p n'est pas réel positif (ce qui serait

déjà suffisant pour la suite) : voir les commentaires après le lemme 6 de la
prochaîne section.

Passons maintenant à la preuve du théorème 1. Pour simplifier les notations,

supposons que T a une seule singularité, p. Soit la surface obtenue par
la construction suivante:

• si p est simple, Z(0) est l'éclaté de X en p ;

• si p est un nœud-col, X{0) est le produit de dp éclatements, chaque
éclatement au seul point au dessus de p où le feuilletage relevé a un
nœud-col :

Le diviseur exceptionnel de X(0) -> X contient donc une courbe rationnelle
d autointersection —1 et une chaîne de dp — 1 courbes rationnelles d'auto-
intersection —2, la contraction desquelles produit la singularité Ad _i du
giaphe X La surface X^ n est donc rien d'autre que la résolution minimale
de X'.

Comme d habitude, on relève f sur X^ et on construit G A1,1(X^)/
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LEMME 3. [3>(°)]2 < [<|)]2 - -f z/(<I> n)2.
Up

Preuve. Considérons d'abord le courant intermédiaire O7 G A1'1(Z/)/ :

puisque n*®' O et [dpEp] • [Ep] -1, on a

[O'] tt*[0] - • [Ep]

et donc
1

m* =*m- -ripr¬
ap

Si dp l on a fini car X' — Z(0). Si dp > \ on passe de X' à X(0) par
suite de dp — 1 éclatements, et puisque O(0) se projette sur O' on obtient

[O(0)]2 < [O']2

une

On peut itérer cette construction. Le feuilletage JCW sur x(0) possède deux

singularités (avec dqm 1, dqm dp sur le diviseur exceptionnel

de X(0) - X qui ne sont pas aux coins de ce diviseur et qui sont donc les

seules susceptibles d'être non petites. Soit X(1) obtenue par la construction

précédente appliquée à ces deux singularités, X(2) par la même construction

appliquée aux deux seules singularités q\l\ q^ de susceptibles d'être

non petites, and so on.

Le même argument que celui du lemme 3 donne alors l'inégalité suivante,

avec notations évidentes et pour n > 1 :

[<J)(«}J2 < [$(»-D]2 __ {^(n-D ,q("~]))2+

et par conséquent:

[<&(n)]2 < [O]2 - {yz^O,/?)2 + + yu(<I>(/,,?2))2}} •

n— 1

.7=0
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L'observation fondamentale est alors la suivante: puisque [0(n)]2 > 0 pour

tout n >0,la somme Yq=o<lui aPParaît ci-dessus est majorée par

[O]2 —j-zy(0,z?)2 pour tout n > 0, et donc
dp

7y(0(//). cf^) 0 pour n —> +00

Le feuilletage T{n) sur X(n) a (au plus) deux singularités non petites, qet
q^\ et de l'inégalité tautologique raffinée on déduit

cx(J»• [<&«] > —f{3>(n),qf) - v(&n\

Mais puisqu'on éclate toujours des singularités réduites on a »
(7r(n))*(7y) (où est la projection de sur X), et donc c\(Tjrw)- [0(n)]

c\(Tf) • [O]. On en déduit que

ci(7»-[O]>0.
C'est le théorème 1. Tout cela démontre (s'il en était besoin) que les

éclatements ne servent pas seulement à résoudre des singularités...

3. Le degré du fibre normal sur la courbe entière

Avec les mêmes hypothèses et notations qu'auparavant, nous allons ici
démontrer le résultat suivant, qui précise [Me, II. 1.4.1].

Théorème 2. c{(Njr) • [O] > 0

On va d'abord se débarrasser de la composante algébrique
Puisque T est à singularités réduites, C U;=1 Q est une

courbe à croisements normaux : elle est T-invariante, donc ses singularités sont

contenues dans Sing{T) et au voisinage d'une de ses singularités elle coïncide
avec l'union des séparatrices de T. On a C\(Njr) [Cj] — [Cj]2 +Z(C;, T), où

Z(Cj,T) est la multiplicité totale des singularités de T le long de C) [Br,
lemme 3], et cette multiplicité est évidemment au moins égale à

Donc c\{Njr) • [Cj] > [Cj] - [C] et par conséquent

C\(NJT) • [Ofl/g] > • [C]

D'autre part, la classe [O] est numériquement effective et donc [Oa/g] • [C] >
diff] ' [O]. On en déduit:

C\(Njr) • [O] > Cj (Njr 0 O(-Cy) • [®diff]
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