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202 M. BRUNELLA

A remarquer que le quotient entre le coefficient de 6y, et celui de o, est
€gal au quotient entre la valeur propre de F en (0,0) le long de N, et celle
le long de Lg.

Si dans le méme exemple on prend A € R (et A ¢ Q pour avoir des feuilles
transcendantes) les feuilles de F sont denses sur des hypersurfaces réelles et
la dynamique de F sur ces hypersurfaces ressemble a celle des feuilletages
linéaires irrationnels des tores. Le courant @ sera alors uniformément distribué
sur une de ces hypersurfaces.

Enfin, on peut construire de nouveaux exemples a partir des précédents par
des transformations birationnelles. On aura ainsi des exemples ou la courbe
entiere passe une infinité de fois a travers une singularité du feuilletage.

2. L’INEGALITE TAUTOLOGIQUE ET SES CONSEQUENCES

On continue avec les hypotheses et les notations de la section précédente :

e X est une surface algébrique lisse;

F est un feuilletage holomorphe sur X, a singularités isolées;

f: C — X est une courbe entiere non dégénérée et tangente a F ;

® € AL1(X) est un courant positif fermé associé a f.
%

En plus, on supposera que les singularit€s de F sont réduites au sens
de [Se] (voir aussi [CS]): au voisinage de chaque point singulier, JF est
engendré par un champ de vecteurs dont la partie linéaire a pour valeurs
propres 1, A, avec A ¢ Q7. Si A # 0 le point singulier est simple, sinon
c’est un neeud-col. Ainsi chaque singularité réduite a une multiplicité d > 1, et
d > 1 si et seulement si la singularité est un nceud-col. Une séparatrice d’une
singularité est une courbe analytique définie au voisinage de la singularité,
tangente au feuilletage et passant par la singularité. On utilisera le fait qu’une
singularité simple a exactement deux séparatrices (I’une transverse a 1’autre),
tandis qu’un nceud-col a une “séparatrice forte” tangente a 1’espace propre
de valeur propre 1 et, parfois, une “séparatrice faible” tangente a celui de
valeur propre 0 [CS], [MR]. L’étude des feuilletages a singularités réduites
est justifiée par le théoréme de réduction des singularités de Seidenberg [Se]:
tout feuilletage peut €tre transformé en un feuilletage a singularités réduites
par une suite d’éclatements.

Du point de vue global, on peut associer a F (et malgré ses singularités)
un fibré tangent Tx et un fibré normal Nr : dans le langage des diviseurs,
Tx (resp. N7, dual de Nx) est représenté par la différence entre le diviseur
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des zéros et le diviseur des pdles d’un champ de vecteurs méromorphe (resp.
d’une 1-forme méromorphe) qui engendre JF. Nous renvoyons a [Br] pour
les propriétés les plus basiques de ces fibrés (par exemple, leur comportement
par éclatements).

Dans cette section nous allons esquisser, d’aprés [Mc], la preuve de
I’inégalité suivante.

THEOREME 1 [Mc, §11.3]. ¢ (Tx) [®] > 0.

En fait, nous nous contenterons de déduire cette inégalité de 1'inégalité
tautologique raffinée [Mc, 11.3.3.2], dont la preuve est (presque) indépendante
du feuilletage et sort un peu du cadre de ce texte.

Soit PTX la projectivisation du fibré tangent de X; c’est un CP'-fibré
sur X, dont on notera w: PTX — X la projection. Sur P7X on dispose du
fibré tautologique Oprx(—1), qui a pour degré —1 sur chaque fibre de 7 et
qui jouera un role essentiel dans la suite. Rappelons la formule (tautologique)
suivante: si C C X est une courbe algébrique lisse et si C" C PTX est son
relevé naturel, on a ¢;(Oprx(—1)) - [C'] = x(O).

Le feuilletage F définit une section de P7TX au dessus de X \ Sing(F),
dont ’adhérence X’ C PTX est appelée graphe de F. Si p € Sing(F), X’
contient toute la fibre 7~ !(p). Si p est simple, X’ est lisse au voisinage de
7~ !(p) et la projection 7: X’ — X s’identifie au voisinage de 7~ !(p) avec
I'éclatement de X en p. Si p est un nceud-col de multiplicité d, X' a sur
7~ !(p) un point singulier de type A,_;. En effet, dans des coordonnées locales
convenables le feuilletage F au voisinage d’un nceud-col de multiplicité
est donné par I’équation (forme normale de Dulac, voir [MR] ou [CS])

(1 + 2™ + wF(z.w)] dw — widz = 0.

ou A € C et F est une fonction holomorphe qui s’annule en (0.0) avec ses
dérivés jusqu’a l'ordre d — 1. Les coordonnées z.w induisent au voisinage
de 7~ !'(p) des coordonnées naturelles z. w. E,ou &= %‘i € CP!, et dans ces
coordonnées le graphe X’ est donné par I’équation )

w! = [z(1 + A + w F(z.w)] €.

Un changement de variable z — 7z’ ramene cette équation a la forme w? = 7/¢,
et on voit que si £ # 0 le point (0.0,&) est régulier, tandis que (0.0.0) est
une singularit¢ Ay_;. Donc le graphe X’ peut avoir des singularités, mais
cela ne nous génera pas beaucoup, a la limite on pourra remplacer X’ par sa
résolution.
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Pour tout p € Sing(F), de multiplicité¢ d,, soit E, = 7~ 1(p), regardé
comme courbe dans X’. On vérifie aisément que d,E, est un diviseur de
Cartier, qui définit donc un fibré linéaire O(d,E,) sur X'. Le degré de
ce fibré sur E, est égal a —1 (car [dpEp]2 = —d, dans X'). D’autre part,
Oprx(—1) a degré —1 sur chaque E, et coincide (par tautologie) avec 7* (1)
sur X"\ |, E,. On en déduit que

Oprx(~Dlx =m*TH) @ O( > dyE,).
peSing(F)

On releve la courbe entiere f sur PTX a travers sa “dérivée” f': C — PTX.
Bien sir, I'image de f’ est dans X’ car f est tangente a F. On peut
associer a f/ un courant positif fermé @' € A!(X’), comme dans la section
précédente, et m, D" = ®. L'inégalité tautologique [Mc, 1.0.2.5] exprime alors,
intuitivement, la “non-négativité de la caractéristique d’Euler” de [®]:

¢1(Oprx(—1)) - [@'] > 0.

Voici I'idée de la preuve [Mc, [.1.1]. Soit Y la variété (de dimension 4)
obtenue a partir de X x X par éclatement de la diagonale A C X x X, et
soit Z C Y le diviseur exceptionnel de I’éclatement: c’est un CP'-fibré sur
A ~ X, canoniquement isomorphe a PTX, et le fibr¢ O(Z) € Pic(Y) restreint a
Z coincide avec le fibré tautologique : Oprx(—1) =~ O(Z)|z. Soit f C - XxX
deﬁnie par f(x) (f(x),f(x)). Pour tout ¢t € C proche de 1 on peut déformer
f de la maniere suivante: on pose f, C—-XxX, f,(x) (f(tx), f(x)). A
la différence de f la courbe enticre ft n’a pas son image contenue dans la
diagonale A, on peut donc la relever sur Y et on la notera alors f ;- On associe
3 ft un courant positif fermé @, € A (Y) et le lemme 1 donne [®,]-[Z] > 0.
Pour ¢+ — 1 la courbe fZ “converge” vers la courbe f': C - PTX ~Z CY,
on a donc [®@']-[Z] > 0, qui est ’inégalité cherchée.
Apres avoir défini

V((Dap) — [(D/] ’ [dp Ep] >0
on peut réécrire 1’inégalité tautologique sous la forme

aTr) (@ >~ > wv®p).

pESing(F)

Une singularité p est dite petite [Mc, 11.3.3.1] s1 elle est simple et
si ses deux séparatrices locales font partie de deux courbes algébriques
(nécessairement invariantes) qui s’intersectent seulement en p. Puisque f est
non dégénérée, son image n’est pas contenue dans ces courbes algébriques
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(mais, bien siir, Supp(®) peut contenir ces courbes) et donc f ne passe pas
a travers la singularité. Cela permet d’améliorer 1’inégalité tautologique, et on
obtient ainsi l'inégalité tautologique raffinée [Mc, 11.3.3.2]:

aTr)-[@ >~ Y ud,p),

pESING(F)

ou SING(F) C Sing(F) est I’ensemble des singularités qui ne sont pas petites.
Comme justification partielle de cette amélioration, remarquons qu’elle serait
évidente si on pouvait démontrer que v(®,p) = 0 si p est petite. Dans le
cas ou @y, = 0 (l.e. ® = Dyy) cette annulation semble avoir lieu si le
quotient des valeurs propres de F en p n’est pas réel positif (ce qui serait
déja suffisant pour la suite): voir les commentaires aprés le lemme 6 de la
prochaine section.

Passons maintenant a la preuve du théoreme 1. Pour simplifier les notations,
supposons que F a une seule singularité, p. Soit XV la surface obtenue par
la construction suivante :

e si p est simple, X© est I’éclaté de X en p:
e si p est un nceud-col, X© est le produit de d, éclatements, chaque

€clatement au seul point au dessus de p ou le feuilletage relevé a un
nceud-col :

xO
"

(l[) - 1

Le diviseur exceptionnel de X® — X contient donc une courbe rationnelle
d’autointersection —1 et une chaine de d, — 1 courbes rationnelles d’auto-
intersection —2, la contraction desquelles produit la singularité Ag,—1 du
graphe X'. La surface XY n’est donc rien d’autre que la résolution minimale
de X'.

Comme d’habitude, on releve f sur X© et on construit ®© ¢ AL (X Oy
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LEMME 3. [®V]? < [@]? — ;};V@v p)?.

Preuve. Considérons d’abord le courant intermédiaire ® € AM'(X') :
puisque 7, D' = ® et [d,E,]-[E,] = —1, on a

(@] = 7" [®] — v(D,p) - [E]

et donc

1
(@' = [@F - —u(®@,p)*.
dp
Sid,=1 ona fini car X’ =X©. Si d, > 1 on passe de X’ a X© par une
suite de d, — 1 éclatements, et puisque @ se projette sur @ on obtient

(@9 <[@7*. O

On peut itérer cette construction. Le feuilletage 7@ sur X possede deux
singularités q(o) , q(20) (avec d 40 = I, dq;m = d,) sur le diviseur exceptionnel
de X@ — X qui ne sont pas aux coins de ce diviseur et qui sont donc les
seules susceptibles d’étre non petites. Soit X obtenue par la construction
précédente appliquée a ces deux singularités, X® par la méme construction

(1)

appliquée aux deux seules singularités g, q(zl) de FU susceptibles d’étre

non petites, and so on.

(0)
4,

xO

() @)
‘11) q;

Le méme argument que celui du lemme 3 donne alors I’inégalité suivante,
avec notations évidentes et pour n > 1:

n— 1 n— n—
[(D(n)]Z < [(D(n—l)]2 _ {U((D(" >Cl(1 1))2 + d_l/(q)(, 1)’ q(2 1))2}
14

et par conséquent:

[<b<’“12§[®12~{ (@, Py’ +Z{u<<b@,q3> + — u<<1><”,q2>) 38
Jj=0
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[’observation fondamentale est alors la suivante: puisque [®™]* > 0 pour

tout n > 0, la somme Z;l:_ol ... qui apparait ci-dessus est majorée par
2

(D] — glp-u(d), p)? pour tout n > 0, et donc

(@™ ¢y — 0 pour n — —400.

Le feuilletage F™ sur X® a (au plus) deux singularités non petites, q(l”) et
qg”), et de I'inégalité tautologique raffinée on déduit

Cl(T]:(n)) . [(I)(n)] > _1/(q)(n)7 q(ln)) . V((I)(H), q(zn)) .

Mais puisqu'on éclate toujours des singularités réduites on a Trm =
(Y (T£) (ot 7™ est la projection de X™ sur X), et donc ¢;(Trwm)-[@™] =
ci(Tx) - [®]. On en déduit que

ci(Tr) [@] = 0.

C’est le théoreme 1. Tout cela démontre (s’il en était besoin) que les
éclatements ne servent pas seulement a résoudre des singularités. ..

3. LE DEGRE DU FIBRE NORMAL SUR LA COURBE ENTIERE

Avec les mémes hypotheses et notations qu’auparavant, nous allons ici
démontrer le résultat suivant, qui précise [Mc, 11.1.4.1].

THEOREME 2. ¢ |(Nr) - [®]>0.

On va d’abord se débarrasser de la composante algébrique @y, =
Zj.vzl Ajbc;. Puisque F est a singularités réduites, C = UN:1 C; est une
courbe a croisements normaux : elle est F -invariante, donc ses singularités sont
contenues dans Sing(F) et au voisinage d’une de ses singularités elle coincide
avec I'union des séparatrices de F. On a ¢;(Nx)-[Cj] = [Cj]2 +Z(C;, F), ou
Z(C;, F) est la multiplicité totale des singularités de F le long de C; [Br,
lemme 3], et cette multiplicité est évidemment au moins égale a [Cj]-> ", #j[Ck].
Donc ¢i(Ng) - [C;] = [C;] - [C] et par conséquent

ClNF) - [Pagl > [Pug] - [C].

D’autre part, la classe [®@] est numériquement effective et donc [@ue]- [C] >
~[Dyig] - [C]. On en déduit:

CiNF) - [P] = ci(Nr & O(=C)) - [Puy] .
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