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196 M. BRUNELLA

est constante. Dans notre théorème on laisse la possibilité que / passe par
Sing(T), et même une infinité de fois : cela pourrait (a priori) arriver si T
a une singularité localement engendrée par un champ de vecteurs du type
PZ§-z^rqw^, p,q entiers positifs. Ce caractère singulier de / constitue

(comme dans [Me]) une des difficultés du problème.
Cet article est structuré de la façon suivante. On commence par rappeler la

construction et les propriétés basiques d'un courant positif fermé d> associé

à une courbe entière /: C -4 X non dégénérée et tangente à un feuilletage
T. Puis on évalue les produits d'intersection ci(7» • [O], c\{Njr) • [<É>], où

[<Ê>] G H2(X, R) est la classe de cohomologie de O et 7>, Nsont les

fibrés tangent et normal de T. Si les singularités de T sont réduites (au sens

de A. Seidenberg [Se]) ces produits sont non négatifs, ce qu'on trouve déjà
dans [Me] dans le cas du fibré tangent comme conséquence de son "inégalité
tautologique" (dans le cas du fibré normal le résultat de [Me] est plus faible).
Enfin, en guise d'application, on démontrera le théorème ci-dessus.

Le lecteur attentif verra que la plupart des idées exposées sont déjà présentes
dans [Me]. On peut donc considérer ce texte comme une introduction à (ou

une exégèse de) l'article de McQuillan. Je remercie d'ailleurs le rapporteur
du présent article, dont les critiques constructives m'ont poussé à améliorer
la rédaction.

1. Courbes entières et courants positifs fermés

Soit X une variété projective lisse de dimension n et soit /: C ^ X
une application holomorphe dont l'image n'est pas contenue dans une courbe

algébrique. .Soulignons que, pour le moment, on ne suppose pas que / soit

tangente à un feuilletage holomorphe. On peut associer à une telle courbe

entière un courant positif fermé de la façon suivante, qui est essentiellement

due à L. Ahlfors et R. Nevanlinna et qu'on retrouve explicitement dans [Me,
1.0.3]. Voir aussi [Del] pour d'autres renseignements utiles sur le sujet et [De2]

pour les notions basiques concernant les courants sur les variétés complexes.

Fixons d'abord une forme kàhlérienne u G A1,1^). Pour toute 77 G A2ÇX)

et pour tout r > 0 posons

TfAv)= / J/Ah
J 0 1 JD(t)

où D(t) C C est le disque de rayon t. Considérons les courants positifs
<Dr eAx^{X)' définis par
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®Yv) AtyV ?] e
Tftr(v)

La famille {0/-};>o est bornée par rapport à la norme usuelle de A1'1®7, on

peut donc choisir une suite {r„} C R+, rn —» +00, telle que Or,( converge

dans la topologie faible pour n +00 vers un courant positif <D G A1'1®7.
Nous cherchons toutefois des courants fermés, et pour cela il faut choisir la

suite {r/2} de façon convenable. Notons A(r) l'aire de /(D(r)) et L(r) la

longueur de f(dD(r)), on a donc

fr dt
TfAüü)= / Ait)—

/o t

et définissons r dt
SfAu)= / L{t)—

Si ß G A1®, le théorème de Stokes et la compacité de X garantissent

l'inégalité

\Tf,(dß)\ < f T f
Jo 1 J dD(t)

où la constante const dépend de ß (c'est sa norme) mais ne dépend pas
de r. Pour avoir un courant O fermé il suffit donc de choisir la suite {r/7}
de manière telle que la propriété géométrique suivante soit satisfaite:

-—— -» 0, -> +00
Tf,r„(U>)

L'existence d'une telle suite est assurée par le lemme suivant, qui est une
variation sur le lemme d'Ahlfors (affirmant lim inf,_+OG jj^ 0).

Lemme 0. On a

lin
>+00 Tf,A)

lim inf ^^ 0

Preuve. Soit /*tu F(t, 6) t dt A dO, où (t,Q) sont les coordonnées
polaires dans C et F est une fonction non négative. On a alors A(r)
/q J027r tF(t, 6) dOdt et la conformité de / implique que L(r) r F(r, 6)^d0.
L'inégalité de Cauchy-Schwarz donne, pour r > 1,

Sf<r(^)-Sftl(u)=[ f tF{t,9)U
J1 Jotr rl* dtO. r r2*

^ dt- '

-Oh "Troll
< (2irlog rY-A^Y- —(2nlog(-'j (a.-) )3
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Il s'agit donc de montrer que

(rlog r)-j-Tf T{u
lim mf ^ 0
r^+ oo Tf^r(üj)2

Remarquons que Tj\r(uj) est strictement croissante et sa croissance est au

moins logarithmique; en particulier 7}>(u;) est divergente pour r —i +00.
Pour tout R > 1 la mesure de [R, +00) par rapport à la mesure est

finie, tandis que par rapport à elle est infinie. Donc il n'existe pas c > 0

tel que djff,r^y > c 77^77 Pour tout r dans un voisinage de +00.

Si {rn} est une suite comme ci-dessus, on pourra alors extraire une sous-

suite {rnk} divergente telle que 0r converge vers un courant positif fermé 0.
Soulignons que 0 ne dépend pas seulement de / mais aussi de la forme

kâhlérienne choisie et, surtout, des suites {rn} et {rllk}. En fait, il n'est pas

indispensable que c0 soit kâhlérienne [Me, 1.0.4.8], il suffit qu'elle satisfasse

la propriété suivante: lu est une (1,1)-forme fermée, semi-positive sur X et

strictement positive sur X \ X, où £ C X est une hypersurface algébrique qui
ne contient pas l'image de /. On appellera semi-kâhlérienne une telle forme.

Si TT : Y —> X est un morphisme birationnel (par exemple l'éclatement
d'un point ou d'une sous-variété de X) et si /(C) n'est pas contenue dans

l'ensemble des valeurs critiques de 7r, on peut relever / en /: C —> Y. Si

uj G A]A (X) est semi-kâhlérienne, u — tt*uj l'est aussi et on peut construire,

comme auparavant, un courant positif fermé O G (quitte à choisir,

peut-être, de nouvelles sous-suites). On a évidemment:

TuAb O

car Tj r(ir*7j) 7/,r(p) pour toute ij G A2(X).

On notera [O] la classe de cohomologie dans //n_1,"_1(X, R) représentée

par 0. Si Z C X est une hypersurface algébrique, on notera [Z] sa classe

dans R) et [0] • [Z] le produit d'intersection avec [0].

LEMME 1. Soit Z G X une hypersurface algébrique qui ne contient pas
Vimage de f, alors

[0] • [Z) > 0.

Remarque. /(C) (f Z n'exclut pas la possibilité que Supp 0 c Z, par
exemple 0 pourrait être le courant d'intégration sur une courbe contenue

dans Z.
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Preuve. Fixons une métrique hermitienne sur le fibré O(Z) et soit

0 G Ald(X) sa courbure multipliée par ^ ; il s'agit de montrer que d>(0) > 0.

Si s est une section de 0(Z) qui s'annule précisément sur Z, on a la formule

de Poincaré-Lelong (voir, par exemple, [De2])

© <5z + ffßlogHi'||2
27XI

où 6z est le courant d'intégration sur Z et l'égalité est au sens des courants. Si

r > 0, la formule de Jensen (voir, par exemple, [Del]) donne (en supposant,

pour simplifier, que /(0) ^ Z)

7>,,.(0) -2- J log ||s(/(re'0)) || dd

- log !;v(/'(0l) Il + Y, ordreZ0 •/'» lQg O
zeDW(Z)ez

Mais log H^ll est supérieurement borné sur X, donc 7},r(0) est inférieurement

borné, uniformément en r. D'autre part, Tfffuj) —* +00 pour r —* +00, ce

qui implique

O(0) lim D
'•„^+oo

Considérons maintenant le cas où X est une surface. Puisque, par hypothèse,

/(C) n'est pas contenue dans une courbe algébrique, on déduit du lemme

précédent que la classe [O] est numériquement effective :

[O] • [C] >0 pour toute courbe C C X.

On sait bien que cela entraîne :

[O]2 > 0.

Supposons à présent qu'on dispose sur la surface X d'un feuilletage
holomorphe T (à singularités isolées), et que la courbe entière /: C —» X est

tangente à T. C'est-à-dire, si Q est une 1-forme holomorphe dans un ouvert
de X qui définit T dans cet ouvert, alors /*Q 0. Le courant positif fermé O

est alors invariant par T au sens suivant : 0(77) 0 pour toute 2-forme 77 qui
s'annule sur T (i.e. qui s'annule en restriction aux feuilles de F). En effet,

pour une telle 2-forme on a ffp 0. Voyons de plus près ce que cela signifie.
Soit p e X un point régulier de T ; choisissons près de p des coordonnées
locales (z\jZ2) dans lesquelles T {dz\ 0}. Dans ces coordonnées O

s'exprime (avec quelques abus de notations) comme JV ^ t 2 Aj^ dzj A dzk,
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où les Ajtk sont des mesures; la condition de ^-invariance implique alors

Ai52 A_2,i A2,2 0, et d<& — 0 implique que ne dépend pas de

Z2•> Z2 et donc que A\ti engendre une mesure transverse invariante pour T
(ou, plus exactement, pour ^|x\SingCF))- Voir [Su] pour plus de détails sur
cette correspondance entre courants positifs fermés J^-invariants et mesures
transverses T-invariantes. On peut donc penser le support K de O comme
une "lamination" (singulière), formée de certaines feuilles du feuilletage et

équipée d'une mesure transverse qui permet d'intégrer les 2-formes le long
de ces feuilles (en obtenant ainsi le courant O). On va résumer cela dans un
lemme.

LEMME 2. Le feuilletage ^|x\Sing(.F) possède une mesure transverse
invariante p dont le support coïncide avec KL\{X\ SingùA*)).

Si p G X \ Sing(T) est un atome de p, la feuille de T passant par

p est nécessairement algébrique, i.e. son adhérence dans X est une courbe

algébrique Cp. En effet, une telle feuille ne peut pas s'accumuler sur elle-
même ou sur une autre feuille de ^IrvSingÇT7) > puisque cela contredirait la
finitude de la mesure transverse invariante. Donc la feuille passant par p
est un sous-ensemble analytique de X \ Sing^T7), et les théorèmes classiques
d'élimination des singularités garantissent que l'adhérence de la feuille dans

X est encore analytique, donc une courbe algébrique. Le courant O "contient"
alors le courant d'intégration sur Cp, avec poids égal à p(p). Puisque T a des

feuilles non algébriques, le nombre de feuilles algébriques est fini, d'après un
théorème classique de Darboux généralisé dans [Jo]. On peut donc décomposer
O de la façon suivante:

O Q>alg + Oaff

où A/ > Os Cj courbe algébrique T-invariante, et

est un courant positif fermé T -invariant et dont la mesure transverse associée

n'a pas d'atomes.

Soulignons que, même si /: C —» X a une image transcendante, il peut
bien arriver que <&aig soit non triviale. Par contre, nous ne connaissons pas

d'exemples (mais il doit y en avoir) où la décomposition ci-dessus est non

triviale, i.e. <Da/g > 0 et Odiff > 0. Puisque O dépend de la suite rn —» -f-oo,

on peut espérer obtenir l'annulation d'un des deux termes de la décomposition

après avoir choisi une sous-suite rnk —» +oo.
Terminons cette section par un exemple qui illustre la théorie précédente.

Soit X CP1 x CP1 et soit T le feuilletage qui s'exprime dans la carte
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affine CxCcI par l'équation

wdz — Xz dw 0

où À G C\R. Les seules feuilles algébriques de T sont les quatres droites

L0 {z 0} Loo {zoo} Mx, {w oo}

sur lesquelles toute autre feuille s'accumule. La courbe entière

est tangente à T et son image est transcendante. On utilisera la forme

kâhlérienne u — ùû\ + eu?, où u\
* fëArv et eu? Les calculs(1-L|- (1+Jiü|-)-

explicites sont possibles mais ennuyeux ; il est toutefois aisé de voir que, pour
une constante convenable c > 0, on a pour t +oo

et donc Tf^fyo) (1 + |À|) cr+o(l) pour r —* +oo. La courbe réelle f{dD(t))
s'approche de plus en plus, pour t —> +oo, de l'union T des quatre droites
T-invariantes. Donc si rj G A2(X) a son support disjoint de T on obtient

que est constant pour t assez grand et par conséquent 7)>(?/) a

une croissance logarithmique en r. Cela signifie que si O G /\1 (X); est un
courant positif fermé dérivé de / on a 0(77) 0 et donc Supp Oc T. Cela
correspond au fait que, pour des raisons dynamiques évidentes, les seules

mesures transverses invariantes sont celles concentrées sur T. On peut alors
développer <D sous la forme

O ao Ôl0 + 00 <$L0o + 6Nq + b^ SNoc

où ao.ci^^bo.boo sont des réels positifs. Puisque c|À|r + o(l),
on a nécessairement O(cui) • D'autre part, ùLo(cui) SLoc(ujx) 0,

1) ^00(^1) 27t, donc 27t(Z?o + ^00) i±\\\ • ^e façon analogue,
avec cu2 à la place de cuj, on arrive à 27r(a0 + a^) Enfin, raisons
de symétrie imposent a0 et b0 et donc O coïncide forcément
avec le courant

f:C^X /(

47r( 1 + + àLaa + |A[<5/v0 + AI (5/y^



202 M. BRUNELLA

À remarquer que le quotient entre le coefficient de 6n0 et celui de 6l0 est

égal au quotient entre la valeur propre de T en (0, 0) le long de No et celle
le long de Lo.

Si dans le même exemple on prend À G R (et À ^ Q pour avoir des feuilles
transcendantes) les feuilles de T sont denses sur des hypersurfaces réelles et

la dynamique de T sur ces hypersurfaces ressemble à celle des feuilletages
linéaires irrationnels des tores. Le courant O sera alors uniformément distribué

sur une de ces hypersurfaces.

Enfin, on peut construire de nouveaux exemples à partir des précédents par
des transformations birationnelles. On aura ainsi des exemples où la courbe

entière passe une infinité de fois à travers une singularité du feuilletage.

2. L'inégalité tautologique et ses conséquences

On continue avec les hypothèses et les notations de la section précédente :

• X est une surface algébrique lisse;

• T est un feuilletage holomorphe sur X, à singularités isolées;

• / : C —» X est une courbe entière non dégénérée et tangente à T ;

• O G A1,1 (A)' est un courant positif fermé associé à /.
En plus, on supposera que les singularités de T sont réduites au sens

de [Se] (voir aussi [CS]) : au voisinage de chaque point singulier, T est

engendré par un champ de vecteurs dont la partie linéaire a pour valeurs

propres 1, A, avec À ^ Q+ .Si À ^ 0 le point singulier est simple, sinon

c'est un nœud-col. Ainsi chaque singularité réduite a une multiplicité d > 1, et

d > 1 si et seulement si la singularité est un nœud-col. Une séparatrice d'une

singularité est une courbe analytique définie au voisinage de la singularité,

tangente au feuilletage et passant par la singularité. On utilisera le fait qu'une
singularité simple a exactement deux séparatrices (l'une transverse à l'autre),
tandis qu'un nœud-col a une "séparatrice forte" tangente à l'espace propre
de valeur propre 1 et, parfois, une "séparatrice faible" tangente à celui de

valeur propre 0 [CS], [MR]. L'étude des feuilletages à singularités réduites

est justifiée par le théorème de réduction des singularités de Seidenberg [Se] :

tout feuilletage peut être transformé en un feuilletage à singularités réduites

par une suite d'éclatements.

Du point de vue global, on peut associer à T (et malgré ses singularités)

un fibré tangent 7> et un fibré normal Njr : dans le langage des diviseurs,

7> (resp. N*jr, dual de Nj?) est représenté par la différence entre le diviseur
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