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196 M. BRUNELLA

est constante. Dans notre théoreme on laisse la possibilité que f passe par
Sing(F), et méme une infinité de fois: cela pourrait (a priori) arriver si F
a une singularité¢ localement engendrée par un champ de vecteurs du type
ngZ + qwg%, p,q entiers positifs. Ce caractere singulier de f constitue
(comme dans [Mc]) une des difficultés du probleme.

Cet article est structuré de la facon suivante. On commence par rappeler la
construction et les propriétés basiques d’un courant positif fermé @ associé
a une courbe entiere f: C — X non dégénérée et tangente a un feuilletage
F . Puis on évalue les produits d’intersection c¢|(Tr) - [®], ci(Nx) - [P], ou
(@] € H*(X,R) est la classe de cohomologie de ® et Tr, Nr sont les
fibrés tangent et normal de F. Si les singularités de F sont réduites (au sens
de A. Seidenberg [Se]) ces produits sont non négatifs, ce qu’on trouve déja
dans [Mc] dans le cas du fibré tangent comme conséquence de son “inégalité
tautologique” (dans le cas du fibré normal le résultat de [Mc] est plus faible).
Enfin, en guise d’application, on démontrera le théoreme ci-dessus.

Le lecteur attentif verra que la plupart des idées exposées sont déja présentes
dans [Mc]. On peut donc considérer ce texte comme une introduction a (ou
une exégese de) l'article de McQuillan. Je remercie d’ailleurs le rapporteur
du présent article, dont les critiques constructives m’ont poussé a améliorer
la rédaction.

1. COURBES ENTIERES ET COURANTS POSITIFS FERMES

Soit X une variété projective lisse de dimension n et soit f: C — X
une application holomorphe dont I’image n’est pas contenue dans une courbe
algébrique.. :Soulignons que, pour le moment, on ne suppose pas que f soit
tangente a un feuilletage holomorphe. On peut associer a une telle courbe
entiere un courant positif fermé de la fagon suivante, qui est essentiellement
due a L. Ahlfors et R. Nevanlinna et qu’on retrouve explicitement dans [Mc,
1.0.3]. Voir aussi [Del] pour d’autres renseignements utiles sur le sujet et [De2]
pour les notions basiques concernant les courants sur les variétés complexes.

Fixons d’abord une forme kihlérienne w € AL1(X). Pour toute n € A%(X)
et pour tout r > 0 posons

"dt »
T; () = / — ',
o ! Jpw

ou D(t) C C est le disque de rayon ¢. Considérons les courants positifs
®, € AV(X)' définis par
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Tf,r(n) 9
o= YneA®.

La famille {®,},~¢ est bornée par rapport a la norme usuelle de ALL (X)), on
peut donc choisir une suite {r,} C R*, r, — +oo0, telle que ®,, converge
dans la topologie faible pour n — 4co vers un courant positif ® € AN (X)'.
Nous cherchons toutefois des courants fermés, et pour cela il faut choisir la
suite {r,} de facon convenable. Notons A(r) l'aire de f(D(r)) et L(r) la
longueur de f(0D(r)), on a donc

’ dt
T (w)= [ A(®)—,
0 1t
et définissons

d dt
Sf,r(w)Z/ L(r)?.
0

Si B € A'(X), le théoreme de Stokes et la compacité de X garantissent
I’inégalité
" dt .
Ty ,(df)| < / D 1Bl < const - Sy,

o I Joapw
ou la constante const dépend de (3 (c’est sa norme) mais ne dépend pas
de r. Pour avoir un courant @ fermé il suffit donc de choisir la suite {r,}
de maniere telle que la propriété géométrique suivante soit satisfaite :

St (W)
T, (W)
L'existence d’une telle suite est assurée par le lemme suivant, qui est une
variation sur le lemme d’Ahlfors (affirmant liminf

— 0, n— +00.

L
r——oo AE:; O)

LEMME 0. On a

lim inf ~Sf—— =0.
F— 00 Tf (w)

Preuve. Soit f*w = F(t,0)tdt N df, ou (t,0) sont les coordonnées po-
lalres dans C et F est une fonction non négative. On a a101s A(r)

fo g "t F(t,0)dOdt et la conformité de f implique que L(r) = rfo F(r, 0)2d0.
L’inégalité de Cauchy-Schwarz donne, pour r > 1,

T e i dt
Sf,r(w)—Sf,l(w):/ / fF(l‘,Q)?d@—

// d@dt // PF(t Q)deTT)

< 2rlogr)?A(r)? = Q27 logr)? ( Tf,(w))

19—
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Il s’agit donc de montrer que

log VLT,
lim inf (rlog 1) g Tr.r() =

0.
Pt B0 Tf,r(W)2

Remarquons que 77 ,(w) est strictement croissante et sa croissance est au
moins logarithmique; en particulier 77 ,.(w) est divergente pour r — +00.

Pour tout R > 1 la mesure de [R,+4oc0) par rapport a la mesure ‘gf (LQ)JZ) est
dr ’

- elle est infinie. Donc il n’existe pas ¢ > 0
rlogr

finie, tandis que par rapport a

dTy (w) dr
Ty, (w)? > Crlogr

tel que pour tout r dans un voisinage de +o0. L]

Si {r,} est une suite comme ci-dessus, on pourra alors extraire une sous-
suite {r,, } divergente telle que ®,, converge vers un courant positif ferme¢ .

Soulignons que @ ne dépend pas seulement de f mais aussi de la forme
kdhlérienne choisie et, surtout, des suites {r,} et {r, }. En fait, il n’est pas
indispensable que w soit kdhlérienne [Mc, 1.0.4.8], il suffit qu’elle satisfasse
la propriété suivante: w est une (1,1)-forme fermée, semi-positive sur X et
strictement positive sur X \ X, ou X C X est une hypersurface algébrique qui
ne contient pas I’image de f. On appellera semi-kihlérienne une telle forme.

Si 7: Y — X est un morphisme birationnel (par exemple 1’éclatement
d’un point ou d’une sous-variété de X) et si f(C) n’est pas contenue dans
I’ensemble des valeurs critiques de 7, on peut relever f en f: C—-Y.Si
w € AVN(X) est semi-kiihlérienne, @ = 7*w D’est aussi et on peut construire,
comme auparavant, un courant positif fermé @ c ALYy (quitte a choisir,
peut-€tre, de nouvelles sous-suites). On a évidemment :

W*&chb

car T; (m*n) = Ty (1) pour toute 1 € A%(X).
On notera [®] la classe de cohomologie dans H"~!"~1(X R) représentée

par ®. Si Z C X est une hypersurface algébrique, on notera [Z] sa classe
dans H'!'(X,R) et [®]-[Z] le produit d’intersection avec [®D].

LEMME 1. Soit Z C X une hypersurface algébrique qui ne contient pas

I’image de f, alors
[@]-[Z] = 0.

REMARQUE. f(C) ¢ Z n’exclut pas la possibilit¢ que Supp ® C Z, par
exemple @ pourrait étre le courant d’intégration sur une courbe contenue
dans Z.
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Preuve. Fixons une métrique hermitienne sur le fibré O(Z) et soit
® ¢ AV (X) sa courbure multipliée par 2—‘7; ; il s’agit de montrer que D(O) > 0.
Si s est une section de ()(Z) qui s’annule précisément sur Z, on a la formule
de Poincaré-Lelong (voir, par exemple, [De2])

1 _
© =6, +—0dlog|s|’,
27l

ol &, est le courant d’intégration sur Z et I’égalité est au sens des courants. Si
r > 0, la formule de Jensen (voir, par exemple, [Del]) donne (en supposant,
pour simplifier, que f(0) ¢ Z)

1 2m .
Ty r(©) = =5 /O log |[s(F(re"))||af
+log |[s(F(O)]| + Z ordre. (s o f) log .

€D f)EZ 2]

Mais log ||s|| est supérieurement borné sur X, donc 7y ,(©) est inférieurement
borné, uniformément en r. D’autre part, Ty (w) — +00 pour r — +00, C€
qui implique

d(O) = lim Tf—'((—a—) >

0. [
ry— =400 Tf,r(CU) o

Considérons maintenant le cas ot X est une surface. Puisque, par hypothese,
f(C) n’est pas contenue dans une courbe algébrique, on déduit du lemme
précédent que la classe [P] est numériguement effective:

[®]-[C] >0 pour toute courbe C C X.
On sait bien que cela entraine:
(@] > 0.

Supposons a présent qu’on dispose sur la surface X d’un feuilletage
holomorphe F (a singularités isolées), et que la courbe entiere f: C — X est
tangente a F. C’est-a-dire, si £ est une 1-forme holomorphe dans un ouvert
de X qui définit F dans cet ouvert, alors /€ = 0. Le courant positif fermé @
est alors invariant par F au sens suivant: ®(n) = 0 pour toute 2-forme 7 qui
s’annule sur JF (i.e. qui s’annule en restriction aux feuilles de F). En effet,
pour une telle 2-forme on a f*n = 0. Voyons de plus pres ce que cela signifie.
Soit p € X un point régulier de J ; choisissons prés de p des coordonnées
locales (zj,z,) dans lesquelles F = {dz; = 0}. Dans ces coordonnées @
s’exprime (avec quelques abus de notations) comme Z_;,k:l,zAj,k dz; N\ dzy,

B
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ou les A;; sont des mesures; la condition de F-invariance implique alors
Aip = Ay = Ayp =0, et dP = 0 implique que A;; ne dépend pas de
22,22 et donc que A;; engendre une mesure transverse invariante pour JF
(ou, plus exactement, pour J|x\singz))- Voir [Su] pour plus de détails sur
cette correspondance entre courants positifs fermés F-invariants et mesures
transverses J -invariantes. On peut donc penser le support K de © comme
une “lamination” (singuliere), formée de certaines feuilles du feuilletage et
équipée d’une mesure transverse qui permet d’intégrer les 2-formes le long
de ces feuilles (en obtenant ainsi le courant ®). On va résumer cela dans un
lemme.

LEMME 2. Le feuilletage F|x\singr) poOSséde une mesure transverse
invariante |, dont le support coincide avec K N (X \ Sing(F)). []

Si p € X\ Sing(F) est un atome de p, la feuille de F passant par
p est nécessairement algébrique, i.e. son adhérence dans X est une courbe
algébrique C,. En effet, une telle feuille ne peut pas s’accumuler sur elle-
méme ou sur une autre feuille de F|x\sing#), puisque cela contredirait la
finitude de la mesure transverse invariante. Donc la feuille passant par p
est un sous-ensemble analytique de X \ Sing(F), et les théorémes classiques
d’élimination des singularités garantissent que 1’adhérence de la feuille dans
X est encore analytique, donc une courbe algébrique. Le courant @ “contient”
alors le courant d’intégration sur C,, avec poids égal a u(p). Puisque F a des
feuilles non algébriques, le nombre de feuilles algébriques est fini, d’apres un
théoreme classique de Darboux généralisé dans [Jo]. On peut donc décomposer
@ de la facon suivante:

D = (Dalg + (Ddiﬂ )

ou Dy = Z;VZI Ajbc, Aj >0, C; courbe algébrique F -invariante, et gy
est un courant positif fermé F -invariant et dont la mesure transverse associée
n’a pas d’atomes.

Soulignons que, méme si f: C — X a une image transcendante, il peut
bien arriver que @, soit non triviale. Par contre, nous ne connaissons pas
d’exemples (mais il doit y en avoir) ou la décomposition ci-dessus est non
triviale, i.e. @y > 0 et Pyyr > 0. Puisque P dépend de la suite r,, — +o0,
on peut espérer obtenir I’annulation d’un des deux termes de la décomposition
aprés avoir choisi une sous-suite r,, — —+00.

Terminons cette section par un exemple qui illustre la théorie précédente.
Soit X = CP! x CP! et soit F le feuilletage qui s’exprime dans la carte
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affine C x C C X par I’équation
wdz — Azdw =0,
ol A € C\ R. Les seules feuilles algébriques de F sont les quatres droites
Ly={z=0}, Leo={z=0c0}, No={w=0}, No ={w=oc},
sur lesquelles toute autre feuille s’accumule. La courbe entiere
fC—-X fx) = (e, e%)

est tangente a F et son image est transcendante. On utilisera la forme
i dzNdz i dwNdT

Aot wyp, = PO Les calculs
(1] 27 (4w

explicites sont possibles mais ennuyeux; il est toutefois aisé de voir que, pour
une constante convenable ¢ > 0, on a pour t — 400

kdhlérienne w = w; + wy, ou w; =

1
ffwr =c|Mt+o0(=)
D@ !

ffwy =ct+ o(l)
Do) d
et donc Ty (w) = (14| A}) cr+o(1) pour r — +oc0. La courbe réelle f((?D(z‘))
s’approche de plus en plus, pour r — +o00, de I'union 7 des quatre droites
F-invariantes. Donc si n € A*(X) a son support disjoint de 7 on obtient
que fD(r) f*n est constant pour ¢ assez grand et par conséquent Tr,.(7) a
une croissance logarithmique en r. Cela signifie que si @ € ALN(X) est un
courant positif fermé dérivé de f on a ®(n) =0 et donc Supp ® C T. Cela
correspond au fait que, pour des raisons dynamiques évidentes, les seules
mesures transverses invariantes sont celles concentrées sur 7'. On peut alors
développer @ sous la forme

(D:aO5L0+aooéLoc —f—bOéNo_}'booéNoc;

ol ag,deo, bo, oo sont des réels positifs. Puisque Tf ,(w;) = ¢ |A]r + o(1),

on a nécessairement ®(w;) = IBIIAI' Dautre part, 6, (w;) = 61 (w1) = 0,

ony(w1) = Oy (w1) = 2w, donc 2m(by + boy) = lr‘lf\‘. De facon analogue,

avec wp a la place de w;, on arrive a 27m(ag + as) = ﬁIM Enfin, raisons
de symétrie imposent ay = ao et by = b, et donc ® coincide forcément
avec le courant

m(&o + 01 + My + | A 6n).
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A remarquer que le quotient entre le coefficient de 6y, et celui de o, est
€gal au quotient entre la valeur propre de F en (0,0) le long de N, et celle
le long de Lg.

Si dans le méme exemple on prend A € R (et A ¢ Q pour avoir des feuilles
transcendantes) les feuilles de F sont denses sur des hypersurfaces réelles et
la dynamique de F sur ces hypersurfaces ressemble a celle des feuilletages
linéaires irrationnels des tores. Le courant @ sera alors uniformément distribué
sur une de ces hypersurfaces.

Enfin, on peut construire de nouveaux exemples a partir des précédents par
des transformations birationnelles. On aura ainsi des exemples ou la courbe
entiere passe une infinité de fois a travers une singularité du feuilletage.

2. L’INEGALITE TAUTOLOGIQUE ET SES CONSEQUENCES

On continue avec les hypotheses et les notations de la section précédente :

e X est une surface algébrique lisse;

F est un feuilletage holomorphe sur X, a singularités isolées;

f: C — X est une courbe entiere non dégénérée et tangente a F ;

® € AL1(X) est un courant positif fermé associé a f.
%

En plus, on supposera que les singularit€s de F sont réduites au sens
de [Se] (voir aussi [CS]): au voisinage de chaque point singulier, JF est
engendré par un champ de vecteurs dont la partie linéaire a pour valeurs
propres 1, A, avec A ¢ Q7. Si A # 0 le point singulier est simple, sinon
c’est un neeud-col. Ainsi chaque singularité réduite a une multiplicité d > 1, et
d > 1 si et seulement si la singularité est un nceud-col. Une séparatrice d’une
singularité est une courbe analytique définie au voisinage de la singularité,
tangente au feuilletage et passant par la singularité. On utilisera le fait qu’une
singularité simple a exactement deux séparatrices (I’une transverse a 1’autre),
tandis qu’un nceud-col a une “séparatrice forte” tangente a 1’espace propre
de valeur propre 1 et, parfois, une “séparatrice faible” tangente a celui de
valeur propre 0 [CS], [MR]. L’étude des feuilletages a singularités réduites
est justifiée par le théoréme de réduction des singularités de Seidenberg [Se]:
tout feuilletage peut €tre transformé en un feuilletage a singularités réduites
par une suite d’éclatements.

Du point de vue global, on peut associer a F (et malgré ses singularités)
un fibré tangent Tx et un fibré normal Nr : dans le langage des diviseurs,
Tx (resp. N7, dual de Nx) est représenté par la différence entre le diviseur

i
1
|
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