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L' Enseignement Mathématique, t. 45 (1999), p. 195-216

COURBES ENTIERES ET FEUILLETAGES HOLOMORPHES

par Marco BRUNELLA

Dans un article remarquable et récent [Mc], M. McQuillan parvient a
démontrer la conjecture de Green-Griffiths [GG] pour les surfaces algébriques
de type général dont la classe de Segre (¢ —c») est positive : toute application
holomorphe f de C a valeurs dans une telle surface X est dégénérée, i.e.
son image est contenue dans une courbe algébrique. C’est un article qui
fait intervenir les feuilletages holomorphes. puisqu’au cours de la preuve
McQuillan montre que si f: C — X n'était pas dégénérée alors elle serait
feuille (singuliere) d'un feuilletage (singulier) F sur X. ou sur un revétement
ramifié de X. L'étude de F. basée en partie sur un théoreme de Y. Miyaoka
[Mi]. mene alors a la contradiction qui prouve la conjecture de Green-Griffiths.

Notre but est de revenir sur la partie “feuilletée™ de [Mc], en espérant y
apporter quelques clarifications. simplifications et améliorations. Par exemple,
nous verrons que le recours au (difficile) théoreme de Miyaoka n’est pas
réellement indispensable. ce qui a I'avantage de permettre de transposer ces
techniques au cas des surfaces rationnelles, ou le théoréme de Miyaoka n’est
pas tres efficace. Pour fixer les idées, nous nous proposons donc de démontrer
le résultat suivant.

THEOREME. Soit F un feuilletage holomorphe de CP? de degré d > 5.
Supposons que chaque singularité de F est non nilpotente, i.e. localement
engendrée par un champ de vecteurs dont la partie linéaire est non nilpotente.
Alors toute application holomorphe f: C — CP- tangente & F est dégéenérée.

Signalons que A. Lins Neto a démontré dans [LN]. sous des hypotheses un
peu plus fortes concernant les singularités de F (mais, par contre, en supposant
seulement d > 2). que les feuilles de ]:ICP:\Smg(ﬂ sont uniformisées par le
disque. et donc que toute application f: C — CP?\ Sing(F) tangente a F




196 M. BRUNELLA

est constante. Dans notre théoreme on laisse la possibilité que f passe par
Sing(F), et méme une infinité de fois: cela pourrait (a priori) arriver si F
a une singularité¢ localement engendrée par un champ de vecteurs du type
ngZ + qwg%, p,q entiers positifs. Ce caractere singulier de f constitue
(comme dans [Mc]) une des difficultés du probleme.

Cet article est structuré de la facon suivante. On commence par rappeler la
construction et les propriétés basiques d’un courant positif fermé @ associé
a une courbe entiere f: C — X non dégénérée et tangente a un feuilletage
F . Puis on évalue les produits d’intersection c¢|(Tr) - [®], ci(Nx) - [P], ou
(@] € H*(X,R) est la classe de cohomologie de ® et Tr, Nr sont les
fibrés tangent et normal de F. Si les singularités de F sont réduites (au sens
de A. Seidenberg [Se]) ces produits sont non négatifs, ce qu’on trouve déja
dans [Mc] dans le cas du fibré tangent comme conséquence de son “inégalité
tautologique” (dans le cas du fibré normal le résultat de [Mc] est plus faible).
Enfin, en guise d’application, on démontrera le théoreme ci-dessus.

Le lecteur attentif verra que la plupart des idées exposées sont déja présentes
dans [Mc]. On peut donc considérer ce texte comme une introduction a (ou
une exégese de) l'article de McQuillan. Je remercie d’ailleurs le rapporteur
du présent article, dont les critiques constructives m’ont poussé a améliorer
la rédaction.

1. COURBES ENTIERES ET COURANTS POSITIFS FERMES

Soit X une variété projective lisse de dimension n et soit f: C — X
une application holomorphe dont I’image n’est pas contenue dans une courbe
algébrique.. :Soulignons que, pour le moment, on ne suppose pas que f soit
tangente a un feuilletage holomorphe. On peut associer a une telle courbe
entiere un courant positif fermé de la fagon suivante, qui est essentiellement
due a L. Ahlfors et R. Nevanlinna et qu’on retrouve explicitement dans [Mc,
1.0.3]. Voir aussi [Del] pour d’autres renseignements utiles sur le sujet et [De2]
pour les notions basiques concernant les courants sur les variétés complexes.

Fixons d’abord une forme kihlérienne w € AL1(X). Pour toute n € A%(X)
et pour tout r > 0 posons

"dt »
T; () = / — ',
o ! Jpw

ou D(t) C C est le disque de rayon ¢. Considérons les courants positifs
®, € AV(X)' définis par
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Tf,r(n) 9
o= YneA®.

La famille {®,},~¢ est bornée par rapport a la norme usuelle de ALL (X)), on
peut donc choisir une suite {r,} C R*, r, — +oo0, telle que ®,, converge
dans la topologie faible pour n — 4co vers un courant positif ® € AN (X)'.
Nous cherchons toutefois des courants fermés, et pour cela il faut choisir la
suite {r,} de facon convenable. Notons A(r) l'aire de f(D(r)) et L(r) la
longueur de f(0D(r)), on a donc

’ dt
T (w)= [ A(®)—,
0 1t
et définissons

d dt
Sf,r(w)Z/ L(r)?.
0

Si B € A'(X), le théoreme de Stokes et la compacité de X garantissent
I’inégalité
" dt .
Ty ,(df)| < / D 1Bl < const - Sy,

o I Joapw
ou la constante const dépend de (3 (c’est sa norme) mais ne dépend pas
de r. Pour avoir un courant @ fermé il suffit donc de choisir la suite {r,}
de maniere telle que la propriété géométrique suivante soit satisfaite :

St (W)
T, (W)
L'existence d’une telle suite est assurée par le lemme suivant, qui est une
variation sur le lemme d’Ahlfors (affirmant liminf

— 0, n— +00.

L
r——oo AE:; O)

LEMME 0. On a

lim inf ~Sf—— =0.
F— 00 Tf (w)

Preuve. Soit f*w = F(t,0)tdt N df, ou (t,0) sont les coordonnées po-
lalres dans C et F est une fonction non négative. On a a101s A(r)

fo g "t F(t,0)dOdt et la conformité de f implique que L(r) = rfo F(r, 0)2d0.
L’inégalité de Cauchy-Schwarz donne, pour r > 1,

T e i dt
Sf,r(w)—Sf,l(w):/ / fF(l‘,Q)?d@—

// d@dt // PF(t Q)deTT)

< 2rlogr)?A(r)? = Q27 logr)? ( Tf,(w))

19—
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Il s’agit donc de montrer que

log VLT,
lim inf (rlog 1) g Tr.r() =

0.
Pt B0 Tf,r(W)2

Remarquons que 77 ,(w) est strictement croissante et sa croissance est au
moins logarithmique; en particulier 77 ,.(w) est divergente pour r — +00.

Pour tout R > 1 la mesure de [R,+4oc0) par rapport a la mesure ‘gf (LQ)JZ) est
dr ’

- elle est infinie. Donc il n’existe pas ¢ > 0
rlogr

finie, tandis que par rapport a

dTy (w) dr
Ty, (w)? > Crlogr

tel que pour tout r dans un voisinage de +o0. L]

Si {r,} est une suite comme ci-dessus, on pourra alors extraire une sous-
suite {r,, } divergente telle que ®,, converge vers un courant positif ferme¢ .

Soulignons que @ ne dépend pas seulement de f mais aussi de la forme
kdhlérienne choisie et, surtout, des suites {r,} et {r, }. En fait, il n’est pas
indispensable que w soit kdhlérienne [Mc, 1.0.4.8], il suffit qu’elle satisfasse
la propriété suivante: w est une (1,1)-forme fermée, semi-positive sur X et
strictement positive sur X \ X, ou X C X est une hypersurface algébrique qui
ne contient pas I’image de f. On appellera semi-kihlérienne une telle forme.

Si 7: Y — X est un morphisme birationnel (par exemple 1’éclatement
d’un point ou d’une sous-variété de X) et si f(C) n’est pas contenue dans
I’ensemble des valeurs critiques de 7, on peut relever f en f: C—-Y.Si
w € AVN(X) est semi-kiihlérienne, @ = 7*w D’est aussi et on peut construire,
comme auparavant, un courant positif fermé @ c ALYy (quitte a choisir,
peut-€tre, de nouvelles sous-suites). On a évidemment :

W*&chb

car T; (m*n) = Ty (1) pour toute 1 € A%(X).
On notera [®] la classe de cohomologie dans H"~!"~1(X R) représentée

par ®. Si Z C X est une hypersurface algébrique, on notera [Z] sa classe
dans H'!'(X,R) et [®]-[Z] le produit d’intersection avec [®D].

LEMME 1. Soit Z C X une hypersurface algébrique qui ne contient pas

I’image de f, alors
[@]-[Z] = 0.

REMARQUE. f(C) ¢ Z n’exclut pas la possibilit¢ que Supp ® C Z, par
exemple @ pourrait étre le courant d’intégration sur une courbe contenue
dans Z.
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Preuve. Fixons une métrique hermitienne sur le fibré O(Z) et soit
® ¢ AV (X) sa courbure multipliée par 2—‘7; ; il s’agit de montrer que D(O) > 0.
Si s est une section de ()(Z) qui s’annule précisément sur Z, on a la formule
de Poincaré-Lelong (voir, par exemple, [De2])

1 _
© =6, +—0dlog|s|’,
27l

ol &, est le courant d’intégration sur Z et I’égalité est au sens des courants. Si
r > 0, la formule de Jensen (voir, par exemple, [Del]) donne (en supposant,
pour simplifier, que f(0) ¢ Z)

1 2m .
Ty r(©) = =5 /O log |[s(F(re"))||af
+log |[s(F(O)]| + Z ordre. (s o f) log .

€D f)EZ 2]

Mais log ||s|| est supérieurement borné sur X, donc 7y ,(©) est inférieurement
borné, uniformément en r. D’autre part, Ty (w) — +00 pour r — +00, C€
qui implique

d(O) = lim Tf—'((—a—) >

0. [
ry— =400 Tf,r(CU) o

Considérons maintenant le cas ot X est une surface. Puisque, par hypothese,
f(C) n’est pas contenue dans une courbe algébrique, on déduit du lemme
précédent que la classe [P] est numériguement effective:

[®]-[C] >0 pour toute courbe C C X.
On sait bien que cela entraine:
(@] > 0.

Supposons a présent qu’on dispose sur la surface X d’un feuilletage
holomorphe F (a singularités isolées), et que la courbe entiere f: C — X est
tangente a F. C’est-a-dire, si £ est une 1-forme holomorphe dans un ouvert
de X qui définit F dans cet ouvert, alors /€ = 0. Le courant positif fermé @
est alors invariant par F au sens suivant: ®(n) = 0 pour toute 2-forme 7 qui
s’annule sur JF (i.e. qui s’annule en restriction aux feuilles de F). En effet,
pour une telle 2-forme on a f*n = 0. Voyons de plus pres ce que cela signifie.
Soit p € X un point régulier de J ; choisissons prés de p des coordonnées
locales (zj,z,) dans lesquelles F = {dz; = 0}. Dans ces coordonnées @
s’exprime (avec quelques abus de notations) comme Z_;,k:l,zAj,k dz; N\ dzy,

B
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ou les A;; sont des mesures; la condition de F-invariance implique alors
Aip = Ay = Ayp =0, et dP = 0 implique que A;; ne dépend pas de
22,22 et donc que A;; engendre une mesure transverse invariante pour JF
(ou, plus exactement, pour J|x\singz))- Voir [Su] pour plus de détails sur
cette correspondance entre courants positifs fermés F-invariants et mesures
transverses J -invariantes. On peut donc penser le support K de © comme
une “lamination” (singuliere), formée de certaines feuilles du feuilletage et
équipée d’une mesure transverse qui permet d’intégrer les 2-formes le long
de ces feuilles (en obtenant ainsi le courant ®). On va résumer cela dans un
lemme.

LEMME 2. Le feuilletage F|x\singr) poOSséde une mesure transverse
invariante |, dont le support coincide avec K N (X \ Sing(F)). []

Si p € X\ Sing(F) est un atome de p, la feuille de F passant par
p est nécessairement algébrique, i.e. son adhérence dans X est une courbe
algébrique C,. En effet, une telle feuille ne peut pas s’accumuler sur elle-
méme ou sur une autre feuille de F|x\sing#), puisque cela contredirait la
finitude de la mesure transverse invariante. Donc la feuille passant par p
est un sous-ensemble analytique de X \ Sing(F), et les théorémes classiques
d’élimination des singularités garantissent que 1’adhérence de la feuille dans
X est encore analytique, donc une courbe algébrique. Le courant @ “contient”
alors le courant d’intégration sur C,, avec poids égal a u(p). Puisque F a des
feuilles non algébriques, le nombre de feuilles algébriques est fini, d’apres un
théoreme classique de Darboux généralisé dans [Jo]. On peut donc décomposer
@ de la facon suivante:

D = (Dalg + (Ddiﬂ )

ou Dy = Z;VZI Ajbc, Aj >0, C; courbe algébrique F -invariante, et gy
est un courant positif fermé F -invariant et dont la mesure transverse associée
n’a pas d’atomes.

Soulignons que, méme si f: C — X a une image transcendante, il peut
bien arriver que @, soit non triviale. Par contre, nous ne connaissons pas
d’exemples (mais il doit y en avoir) ou la décomposition ci-dessus est non
triviale, i.e. @y > 0 et Pyyr > 0. Puisque P dépend de la suite r,, — +o0,
on peut espérer obtenir I’annulation d’un des deux termes de la décomposition
aprés avoir choisi une sous-suite r,, — —+00.

Terminons cette section par un exemple qui illustre la théorie précédente.
Soit X = CP! x CP! et soit F le feuilletage qui s’exprime dans la carte
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affine C x C C X par I’équation
wdz — Azdw =0,
ol A € C\ R. Les seules feuilles algébriques de F sont les quatres droites
Ly={z=0}, Leo={z=0c0}, No={w=0}, No ={w=oc},
sur lesquelles toute autre feuille s’accumule. La courbe entiere
fC—-X fx) = (e, e%)

est tangente a F et son image est transcendante. On utilisera la forme
i dzNdz i dwNdT

Aot wyp, = PO Les calculs
(1] 27 (4w

explicites sont possibles mais ennuyeux; il est toutefois aisé de voir que, pour
une constante convenable ¢ > 0, on a pour t — 400

kdhlérienne w = w; + wy, ou w; =

1
ffwr =c|Mt+o0(=)
D@ !

ffwy =ct+ o(l)
Do) d
et donc Ty (w) = (14| A}) cr+o(1) pour r — +oc0. La courbe réelle f((?D(z‘))
s’approche de plus en plus, pour r — +o00, de I'union 7 des quatre droites
F-invariantes. Donc si n € A*(X) a son support disjoint de 7 on obtient
que fD(r) f*n est constant pour ¢ assez grand et par conséquent Tr,.(7) a
une croissance logarithmique en r. Cela signifie que si @ € ALN(X) est un
courant positif fermé dérivé de f on a ®(n) =0 et donc Supp ® C T. Cela
correspond au fait que, pour des raisons dynamiques évidentes, les seules
mesures transverses invariantes sont celles concentrées sur 7'. On peut alors
développer @ sous la forme

(D:aO5L0+aooéLoc —f—bOéNo_}'booéNoc;

ol ag,deo, bo, oo sont des réels positifs. Puisque Tf ,(w;) = ¢ |A]r + o(1),

on a nécessairement ®(w;) = IBIIAI' Dautre part, 6, (w;) = 61 (w1) = 0,

ony(w1) = Oy (w1) = 2w, donc 2m(by + boy) = lr‘lf\‘. De facon analogue,

avec wp a la place de w;, on arrive a 27m(ag + as) = ﬁIM Enfin, raisons
de symétrie imposent ay = ao et by = b, et donc ® coincide forcément
avec le courant

m(&o + 01 + My + | A 6n).
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A remarquer que le quotient entre le coefficient de 6y, et celui de o, est
€gal au quotient entre la valeur propre de F en (0,0) le long de N, et celle
le long de Lg.

Si dans le méme exemple on prend A € R (et A ¢ Q pour avoir des feuilles
transcendantes) les feuilles de F sont denses sur des hypersurfaces réelles et
la dynamique de F sur ces hypersurfaces ressemble a celle des feuilletages
linéaires irrationnels des tores. Le courant @ sera alors uniformément distribué
sur une de ces hypersurfaces.

Enfin, on peut construire de nouveaux exemples a partir des précédents par
des transformations birationnelles. On aura ainsi des exemples ou la courbe
entiere passe une infinité de fois a travers une singularité du feuilletage.

2. L’INEGALITE TAUTOLOGIQUE ET SES CONSEQUENCES

On continue avec les hypotheses et les notations de la section précédente :

e X est une surface algébrique lisse;

F est un feuilletage holomorphe sur X, a singularités isolées;

f: C — X est une courbe entiere non dégénérée et tangente a F ;

® € AL1(X) est un courant positif fermé associé a f.
%

En plus, on supposera que les singularit€s de F sont réduites au sens
de [Se] (voir aussi [CS]): au voisinage de chaque point singulier, JF est
engendré par un champ de vecteurs dont la partie linéaire a pour valeurs
propres 1, A, avec A ¢ Q7. Si A # 0 le point singulier est simple, sinon
c’est un neeud-col. Ainsi chaque singularité réduite a une multiplicité d > 1, et
d > 1 si et seulement si la singularité est un nceud-col. Une séparatrice d’une
singularité est une courbe analytique définie au voisinage de la singularité,
tangente au feuilletage et passant par la singularité. On utilisera le fait qu’une
singularité simple a exactement deux séparatrices (I’une transverse a 1’autre),
tandis qu’un nceud-col a une “séparatrice forte” tangente a 1’espace propre
de valeur propre 1 et, parfois, une “séparatrice faible” tangente a celui de
valeur propre 0 [CS], [MR]. L’étude des feuilletages a singularités réduites
est justifiée par le théoréme de réduction des singularités de Seidenberg [Se]:
tout feuilletage peut €tre transformé en un feuilletage a singularités réduites
par une suite d’éclatements.

Du point de vue global, on peut associer a F (et malgré ses singularités)
un fibré tangent Tx et un fibré normal Nr : dans le langage des diviseurs,
Tx (resp. N7, dual de Nx) est représenté par la différence entre le diviseur

i
1
|

i
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des zéros et le diviseur des pdles d’un champ de vecteurs méromorphe (resp.
d’une 1-forme méromorphe) qui engendre JF. Nous renvoyons a [Br] pour
les propriétés les plus basiques de ces fibrés (par exemple, leur comportement
par éclatements).

Dans cette section nous allons esquisser, d’aprés [Mc], la preuve de
I’inégalité suivante.

THEOREME 1 [Mc, §11.3]. ¢ (Tx) [®] > 0.

En fait, nous nous contenterons de déduire cette inégalité de 1'inégalité
tautologique raffinée [Mc, 11.3.3.2], dont la preuve est (presque) indépendante
du feuilletage et sort un peu du cadre de ce texte.

Soit PTX la projectivisation du fibré tangent de X; c’est un CP'-fibré
sur X, dont on notera w: PTX — X la projection. Sur P7X on dispose du
fibré tautologique Oprx(—1), qui a pour degré —1 sur chaque fibre de 7 et
qui jouera un role essentiel dans la suite. Rappelons la formule (tautologique)
suivante: si C C X est une courbe algébrique lisse et si C" C PTX est son
relevé naturel, on a ¢;(Oprx(—1)) - [C'] = x(O).

Le feuilletage F définit une section de P7TX au dessus de X \ Sing(F),
dont ’adhérence X’ C PTX est appelée graphe de F. Si p € Sing(F), X’
contient toute la fibre 7~ !(p). Si p est simple, X’ est lisse au voisinage de
7~ !(p) et la projection 7: X’ — X s’identifie au voisinage de 7~ !(p) avec
I'éclatement de X en p. Si p est un nceud-col de multiplicité d, X' a sur
7~ !(p) un point singulier de type A,_;. En effet, dans des coordonnées locales
convenables le feuilletage F au voisinage d’un nceud-col de multiplicité
est donné par I’équation (forme normale de Dulac, voir [MR] ou [CS])

(1 + 2™ + wF(z.w)] dw — widz = 0.

ou A € C et F est une fonction holomorphe qui s’annule en (0.0) avec ses
dérivés jusqu’a l'ordre d — 1. Les coordonnées z.w induisent au voisinage
de 7~ !'(p) des coordonnées naturelles z. w. E,ou &= %‘i € CP!, et dans ces
coordonnées le graphe X’ est donné par I’équation )

w! = [z(1 + A + w F(z.w)] €.

Un changement de variable z — 7z’ ramene cette équation a la forme w? = 7/¢,
et on voit que si £ # 0 le point (0.0,&) est régulier, tandis que (0.0.0) est
une singularit¢ Ay_;. Donc le graphe X’ peut avoir des singularités, mais
cela ne nous génera pas beaucoup, a la limite on pourra remplacer X’ par sa
résolution.
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Pour tout p € Sing(F), de multiplicité¢ d,, soit E, = 7~ 1(p), regardé
comme courbe dans X’. On vérifie aisément que d,E, est un diviseur de
Cartier, qui définit donc un fibré linéaire O(d,E,) sur X'. Le degré de
ce fibré sur E, est égal a —1 (car [dpEp]2 = —d, dans X'). D’autre part,
Oprx(—1) a degré —1 sur chaque E, et coincide (par tautologie) avec 7* (1)
sur X"\ |, E,. On en déduit que

Oprx(~Dlx =m*TH) @ O( > dyE,).
peSing(F)

On releve la courbe entiere f sur PTX a travers sa “dérivée” f': C — PTX.
Bien sir, I'image de f’ est dans X’ car f est tangente a F. On peut
associer a f/ un courant positif fermé @' € A!(X’), comme dans la section
précédente, et m, D" = ®. L'inégalité tautologique [Mc, 1.0.2.5] exprime alors,
intuitivement, la “non-négativité de la caractéristique d’Euler” de [®]:

¢1(Oprx(—1)) - [@'] > 0.

Voici I'idée de la preuve [Mc, [.1.1]. Soit Y la variété (de dimension 4)
obtenue a partir de X x X par éclatement de la diagonale A C X x X, et
soit Z C Y le diviseur exceptionnel de I’éclatement: c’est un CP'-fibré sur
A ~ X, canoniquement isomorphe a PTX, et le fibr¢ O(Z) € Pic(Y) restreint a
Z coincide avec le fibré tautologique : Oprx(—1) =~ O(Z)|z. Soit f C - XxX
deﬁnie par f(x) (f(x),f(x)). Pour tout ¢t € C proche de 1 on peut déformer
f de la maniere suivante: on pose f, C—-XxX, f,(x) (f(tx), f(x)). A
la différence de f la courbe enticre ft n’a pas son image contenue dans la
diagonale A, on peut donc la relever sur Y et on la notera alors f ;- On associe
3 ft un courant positif fermé @, € A (Y) et le lemme 1 donne [®,]-[Z] > 0.
Pour ¢+ — 1 la courbe fZ “converge” vers la courbe f': C - PTX ~Z CY,
on a donc [®@']-[Z] > 0, qui est ’inégalité cherchée.
Apres avoir défini

V((Dap) — [(D/] ’ [dp Ep] >0
on peut réécrire 1’inégalité tautologique sous la forme

aTr) (@ >~ > wv®p).

pESing(F)

Une singularité p est dite petite [Mc, 11.3.3.1] s1 elle est simple et
si ses deux séparatrices locales font partie de deux courbes algébriques
(nécessairement invariantes) qui s’intersectent seulement en p. Puisque f est
non dégénérée, son image n’est pas contenue dans ces courbes algébriques
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(mais, bien siir, Supp(®) peut contenir ces courbes) et donc f ne passe pas
a travers la singularité. Cela permet d’améliorer 1’inégalité tautologique, et on
obtient ainsi l'inégalité tautologique raffinée [Mc, 11.3.3.2]:

aTr)-[@ >~ Y ud,p),

pESING(F)

ou SING(F) C Sing(F) est I’ensemble des singularités qui ne sont pas petites.
Comme justification partielle de cette amélioration, remarquons qu’elle serait
évidente si on pouvait démontrer que v(®,p) = 0 si p est petite. Dans le
cas ou @y, = 0 (l.e. ® = Dyy) cette annulation semble avoir lieu si le
quotient des valeurs propres de F en p n’est pas réel positif (ce qui serait
déja suffisant pour la suite): voir les commentaires aprés le lemme 6 de la
prochaine section.

Passons maintenant a la preuve du théoreme 1. Pour simplifier les notations,
supposons que F a une seule singularité, p. Soit XV la surface obtenue par
la construction suivante :

e si p est simple, X© est I’éclaté de X en p:
e si p est un nceud-col, X© est le produit de d, éclatements, chaque

€clatement au seul point au dessus de p ou le feuilletage relevé a un
nceud-col :

xO
"

(l[) - 1

Le diviseur exceptionnel de X® — X contient donc une courbe rationnelle
d’autointersection —1 et une chaine de d, — 1 courbes rationnelles d’auto-
intersection —2, la contraction desquelles produit la singularité Ag,—1 du
graphe X'. La surface XY n’est donc rien d’autre que la résolution minimale
de X'.

Comme d’habitude, on releve f sur X© et on construit ®© ¢ AL (X Oy
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LEMME 3. [®V]? < [@]? — ;};V@v p)?.

Preuve. Considérons d’abord le courant intermédiaire ® € AM'(X') :
puisque 7, D' = ® et [d,E,]-[E,] = —1, on a

(@] = 7" [®] — v(D,p) - [E]

et donc

1
(@' = [@F - —u(®@,p)*.
dp
Sid,=1 ona fini car X’ =X©. Si d, > 1 on passe de X’ a X© par une
suite de d, — 1 éclatements, et puisque @ se projette sur @ on obtient

(@9 <[@7*. O

On peut itérer cette construction. Le feuilletage 7@ sur X possede deux
singularités q(o) , q(20) (avec d 40 = I, dq;m = d,) sur le diviseur exceptionnel
de X@ — X qui ne sont pas aux coins de ce diviseur et qui sont donc les
seules susceptibles d’étre non petites. Soit X obtenue par la construction
précédente appliquée a ces deux singularités, X® par la méme construction

(1)

appliquée aux deux seules singularités g, q(zl) de FU susceptibles d’étre

non petites, and so on.

(0)
4,

xO

() @)
‘11) q;

Le méme argument que celui du lemme 3 donne alors I’inégalité suivante,
avec notations évidentes et pour n > 1:

n— 1 n— n—
[(D(n)]Z < [(D(n—l)]2 _ {U((D(" >Cl(1 1))2 + d_l/(q)(, 1)’ q(2 1))2}
14

et par conséquent:

[<b<’“12§[®12~{ (@, Py’ +Z{u<<b@,q3> + — u<<1><”,q2>) 38
Jj=0
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[’observation fondamentale est alors la suivante: puisque [®™]* > 0 pour

tout n > 0, la somme Z;l:_ol ... qui apparait ci-dessus est majorée par
2

(D] — glp-u(d), p)? pour tout n > 0, et donc

(@™ ¢y — 0 pour n — —400.

Le feuilletage F™ sur X® a (au plus) deux singularités non petites, q(l”) et
qg”), et de I'inégalité tautologique raffinée on déduit

Cl(T]:(n)) . [(I)(n)] > _1/(q)(n)7 q(ln)) . V((I)(H), q(zn)) .

Mais puisqu'on éclate toujours des singularités réduites on a Trm =
(Y (T£) (ot 7™ est la projection de X™ sur X), et donc ¢;(Trwm)-[@™] =
ci(Tx) - [®]. On en déduit que

ci(Tr) [@] = 0.

C’est le théoreme 1. Tout cela démontre (s’il en était besoin) que les
éclatements ne servent pas seulement a résoudre des singularités. ..

3. LE DEGRE DU FIBRE NORMAL SUR LA COURBE ENTIERE

Avec les mémes hypotheses et notations qu’auparavant, nous allons ici
démontrer le résultat suivant, qui précise [Mc, 11.1.4.1].

THEOREME 2. ¢ |(Nr) - [®]>0.

On va d’abord se débarrasser de la composante algébrique @y, =
Zj.vzl Ajbc;. Puisque F est a singularités réduites, C = UN:1 C; est une
courbe a croisements normaux : elle est F -invariante, donc ses singularités sont
contenues dans Sing(F) et au voisinage d’une de ses singularités elle coincide
avec I'union des séparatrices de F. On a ¢;(Nx)-[Cj] = [Cj]2 +Z(C;, F), ou
Z(C;, F) est la multiplicité totale des singularités de F le long de C; [Br,
lemme 3], et cette multiplicité est évidemment au moins égale a [Cj]-> ", #j[Ck].
Donc ¢i(Ng) - [C;] = [C;] - [C] et par conséquent

ClNF) - [Pagl > [Pug] - [C].

D’autre part, la classe [®@] est numériquement effective et donc [@ue]- [C] >
~[Dyig] - [C]. On en déduit:

CiNF) - [P] = ci(Nr & O(=C)) - [Puy] .
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Notre but est donc de démontrer
Ve @ O(=0)) - [Pyip] > 0.

Pour cela, nous allons d’abord construire une 2-forme fermée © qui représente
la classe de Chern de N ® O(—C), d’apres la méthode classique qui est a la
base de tous les théoremes d’annulation ou d’indice (Baum-Bott, Camacho-
Sad, etc.).

On peut choisir un recouvrement ouvert {U;} de X, des 1-formes
logarithmiques Q; € Q'(log C)(U,) et des (1,0)-formes F; € AMO(Uy) telles
que:

1) dans Uy, F est représenté par f; Qp = 0, ot f; est une équation de C
dans U (donc fi Q¢ € Q'(Uy) est une 1-forme holomorphe a singularités
1solées);

11) chaque U contient au plus une singularité de F;

i) dQp = O N Q dans U \ Vi, ot V, C U, est disjoint de U, pour
tout [ # k.

11 est clair que de tels {Uy, 4, Oi} existent, voici la construction explicite
qu’on utilisera plus loin. Au voisinage d’un point régulier F est donné (en
coordonnées convenables z,w) par dz = 0, on peut choisir alors Q = dz
ou Q = % selon la structure de C au voisinage du point, et § = 0. Au
voisinage d’un point singulier F est donné par adw — bdz = 0, avec a et b
holomorphes et {a = b =0} = {(0,0)}. Si le point singulier n’appartient pas
a C on choisira Q = adw — bdz et

ﬁ:F~f§E@7@&+ﬁmm,
|a|” + [b]
ou F est une fonction C*° réelle qui s’annule au voisinage du point singulier
et qui vaut 1 hors d’un voisinage (aussi petit que ’on veut) de ce méme
point. Si le point singulier est un point double de C, on peut supposer que
dans les coordonnées fixées on a C = {zw = 0}, et donc a est divisible par

z et b par w car C est F-invariante. On choisira alors € = %% — —f;fi—‘ et
a,—%+b,— L _
B=F- ¢ . w2 Y(@adz+ bdw).
la]” +1b]

Le cas intermédiaire ou le point singulier appartient a un point lisse de C est
laissé au lecteur.

Les ouverts U, seront donc des petites boules centrées sur des points
réguliers ou singuliers, et Vi C U, des boules encore plus petites, ou méme
vides dans le cas des points réguliers.
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Sur chaque intersection Uy N U; on a
Q. = g/\ij gij € O*(U/\ M Uj)

et {gi} € H'(X,O*) est un cocycle définissant le fibré Ny ® O(—C). Pour se
convaincre de cela, notons L le fibré défini par {gy}. Le fibré L® O(C) est
donc donné par le cocycle {gkj%}. Les relations f; £ = gkj%' /i €; montrent
que les f; Q; définissent une 1-forme holomorphe a valeurs dans L& O(C), et
plus exactement une section de N3 ® L ® O(C) car les f; £, engendrent F .
Cette section n’a aucun zéro, puisque chaque f; {; est a singularités isolées,
donc elle trivialise N ® L ® O(C), d’ou L = Nr ® O(—C).

En différentiant la relation ci-dessus et grace a d€ = [Or A L), qui est

satisfaite sur les intersections, on obtient
dgy
— = O — B+
Gkj

ou vy € AU N U;) s’annulent sur F et forment un cocycle. On peut
trivialiser ce cocycle, car on est en train de travailler avec des formes C°° :

Y =% — > w €AY WU, W

£ =0. Ainsi

dgij
— = (B + ) — (G + )
Gkj

et donc la 2-forme fermée © € A*(X) localement définie par

1
0= o -d(Br + Vi)
i

représente ¢;(Ny @ O(—C)). Remarquons qu’elle n’est pas (en général) de
type (1,1).

Pour évaluer ¢|(Nx @ O(=C)) - [Dyyr] il faut intégrer © sur la courbe
entiere f, ou mieux il faut intégrer © sur la lamination Kair = Supp(@gy) par
rapport a la mesure transverse invariante /. Mais dyi|z =0 et dB|r =0
hors de Vi, grice a dQ; = B N Q, et I'intégrale est donc localisée au
voisinage des points singuliers. [’expression D4 (dBy) est sans ambiguité et
avec ces notations on peut résumer la discussion dans le lemme suivant.

LEMME 4. On a

1Ny ® O(—C)) - [®yyp] = 2%” > ®udBy),

ou la somme est sur tous les k tels que Uy est centré sur une singularité de
F dans Kd,ﬁ. L]
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Tout cela marche sans restriction sur les singularités de F, pourvu que
C soit a croisements normaux. Mais notre feuilletage n’a que des singularités
réduites, et en plus, d’aprés le lemme 4, seules celles dans Ky nous
intéressent. C’est le moment d’exploiter a fond le fait que la mesure transverse
gy associ€e a Dy n’a pas d’atomes. On renvoie a [CS] et [MR] pour une
description de la structure qualitative des singularités réduites.

Si p € Sing(F) est un nceud-col, on voit sans peine que toute feuille
(locale) de F s’accumule sur la séparatrice forte, sauf la séparatrice faible
(s1 elle existe). Pour voir cela, reprenons la forme normale de Dulac d’un
neeud-col de multiplicité d, dans laquelle on supposera de plus que F =0
(ce qui est toujours possible dans des coordonnées formelles, voir [MR]):

z(1 + ™ Ydw — widz = 0.

Par intégration directe, on trouve que les feuilles sont les graphes des fonctions
(multiformes si A n’est pas un entier)
N o——
z=cw’e @-huwi=l ceC,
plus la séparatrice forte {w = 0}. Pour ¢ = 0 on obtient la séparatrice faible

{z = 0}, et toute autre feuille contient {w = 0} dans son adhérence. On
trouve aussi que ’holonomie de {w = 0} est du type

w— w + 21w’ + o(w?).

Ces propriétés qualitatives de F persistent quand F # O (sauf I’existence
de la séparatrice faible), voir [MR] pour plus de détails. L’holonomie de la
séparatrice forte est assez riche pour forcer toute mesure transverse invariante
a se concentrer sur la méme séparatrice, et donc a étre atomique. Bref, Ky
ne contient pas de nceuds-cols. ;

Des considérations holonomiques du méme genre excluent les singularités
engendrées par un champ de vecteurs dont le quotient des valeurs propres
n’est pas réel et montrent donc que toute singularit€ p de F dans Ky est
d’un des deux types suivants:

I) au voisinage de p, F est engendré (en coordonnées convenables) par
(1+..)zdw— A+ ...)wdz, avec A € RT \ QT ; le théoreme de
linéarisation de Poincaré permet méme de linéariser cette 1-forme;

II) comme dans I) mais avec A € R™; si A € Q™ la singularité est sans
doute linéarisable, si A € R™ \ Q7 elle I'est formellement mais pas
nécessairement analytiquement.
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LEMME 5. Dans le cas 1) on a

q)dlﬂ(_ﬁﬁ) > 0.

Preuve. Si C a un point double en p on a £ = %“— — /\%5 fermée
et donc on peut prendre Gy = 0. Si p ¢ C on a & = zdw — A\wdz et
O = Fi ﬁ%(zdz + Mudw) (et si C a une seule branche a travers p
on a la méme expression mais avec 1 ou A a la place de 1+ ). On peut
supposer que U est un petit bidisque {|z| < €, |w| < €} autour de p, avec
Sy = 0Uy (lissé aux coins) transverse a F . Donc £ = F NS, est un feuilletage
réel orienté de dimension 1 et sans singularités (I’orientation étant induite par
celle des feuilles complexes de F|y, ), et pgy induit une mesure transverse
L-invariante qu’on notera par la méme lettre. Par Stokes, calculer q)dwc(‘ziﬁ—‘li)

revient a calculer I’intégrale de %7 le long de L par rapport a gy . Mais

3 A+ Mdz ot ﬁ _(1+/\_1)dw
27l {|e)=e.|w|<e}nF 27 2 27l {Jw)=¢ 7| <e}nF  2mi w
sont positives le long de £, d’ot la conclusion cherchée (avec stricte

inégalité). [

LEMME 6. Dans le cas II) on a

Re (Ddzﬁ” ﬁk

Preuve. Comme dans le lemme précédent, il suffit considérer le cas
p & C, les autres cas étant presque identiques. Donc Q; = adw — bdz, avec
a=z(I+..), b= w(l+...), NeER et B = F, %52 (adz+bdw).

|al*+|b]*
Si (a;+by,)(0,0) =0 (i.e. A= -—1) on peut en réalité choisir Bx holomorphe
(dans tout Uy), ce qui donne bien siir Dy (dB) = 0: il suffit prendre

Br = Adz+ Bdw, ou A et B sont des fonctions holomorphes satisfaisant
a.+b,, = Aa+Bb. On supposera donc A # —1. Cette fois-ci le feuilletage n’est
pas transverse a des petites sphéres autour du point singulier, et ¢’est justement
sur cela qu’on va s’appuyer. Soit R le feuilletage réel 1-dim tangent a F dans
Ui \ {p} engendré par le noyau de 7|, ot n = Im[, a, :[)IZI (adz + bdw)].
On vérifie aisément que sur chaque séparatrice {z = 0} et {w = 0} ce
feuilletage R est de type radial, tandis que hors des séparatrices les feuilles

de R “glissent” a c6té de p. Plus exactement, on peut choisir le bidisque Uy
de maniere telle que:
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a) OUy est I'union de deux tores solides fermés 77, T, dont les intérieurs
sont transverses a R ;

b) 0T, = 0T, est formé des points de JU;, ol R est tangent extérieurement
a Uy,

c) les feuilles de R dans Uy et hors des séparatrices établissent un difféo-
morphisme ¢ entre 7 et T, privés des intersections avec les séparatrices.

w

\ T2\
y R
\ dx) =y Ly € L
—_— h €L,
T,
U, <
D z

Sur 77 et T, F induit des feuilletages orientés L; et L, avec mesures
transverses invariantes p; et u,. Le difféomorphisme ¢ échange ces deux
feuilletages, préservant les mesures transverses mais renversant les orientations.
On a ¢*(n|z,) = nle,, car n|F est fermée et s’annule sur R, et donc
¢*(Im Br|z,) = Im Bi|z, . Tout cela entraine que I'intégrale de Im 3, le long
de L, par rapport a pu; est opposée a celle le long de L, par rapport a 1
(le fait que ¢ n’est pas défini entre les intersections avec les séparatrices n’a
aucune importance, car ces séparatrices sont de mesure nulle). D’apres Stokes
on a alors @up(Imdf) =0. [

Il nous. semble qu’on devrait pouvoir démontrer, dans ce dernier lemme,
I’annulation de ®7(df) et non seulement de sa partie imaginaire. Dans [Mc,
I1.1.4] on trouve des estimations en fonction du nombre de Lelong de @
en p (qui est lié¢ au nombre v(Pypr, p) de la section précédente), et il est bien
possible que ce nombre s’annule toujours dans le cas II), puisque dans ce cas
les feuilles du feuilletage glissent a c6té de p (tandis que dans le cas I) elles
vont “tout droit” vers p). On vérifie tout cela dans le cas linéarisable, par
calcul direct, mais nous ne savons pas sl les nombres en question sont des
invariants formels (puisque nous ne savons pas ce qu’est la transformée d’une
mesure par un difféomorphisme formel).

En tout cas, les lemmes 4, 5 et 6 suffisent pour démontrer que
ciNr @ O(=C)) - [Pyl > 0 et donc le théoreme 2. On a méme I’inégalité
stricte dés que Ky contient au moins une singularité de type I) qui ne soit
pas un point double de C.
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Remarquons que dans cette preuve on a utilisé seulement le fait que
@® est un courant positif fermé F-invariant et numériquement effectif; sa
provenance d’une courbe entiére est inessentielle. Remarquons aussi (voir
[De2]) que Deffectivité numérique est automatique s1 @y = 0.

Les théoremes 1 et 2 et la relation Ky = T3 ® Nz, ol Kx est le fibré
canonique de X, impliquent:

COROLLAIRE 1. ¢(X) [®] > 0. L]

Si @ était une courbe algébrique lisse D on aurait la formule d’adjonction
c1(X) - [D] = [D)* + x(D) et le corollaire serait conséquence de [D}> > 0
(effectivité numérique) et (D) > 0 (inégalité tautologique). Naivement, dans
tout ce qui précéde on a donc remplacé la formule d’adjonction par sa version
feuilletée c¢1(X) = ci(Nx) + ci1(TF), [D]? par ¢;(NF) - [@], et x(D) par
c((Tr) - [P].

COROLLAIRE 2. X n’est pas de type général. [

En effet, le fibré canonique d’une surface de type général est presque
ample (i.e., ample hors d’une collection finie de courbes rationnelles d’auto-
intersection négative, qui sont négligeables car contractibles), et donc ([Mc])
on aurait ¢;(X) - [®] < 0.

Ceci permet d’éviter, dans la preuve de McQuillan de la conjecture
de Green-Griffiths, le recours au théoreme de semi-positivité générique
de Miyaoka [Mi]. Pour prouver cette conjecture McQuillan considere une
courbe entiere fy: C — Xy a valeurs dans une surface de type général. Si
c%(XO) > 2(Xp), 1l construit un revétement ramifié X — Xy sur lequel le
relevé f: C — X est tangente a un feuilletage a singularités réduites. Puisque
X est encore de type général, le cordllaire 2 implique que f, et donc fp, est
dégénérée.

4. FEUILLETAGES SUR LE PLAN PROJECTIF

Dans cette dernicre section nous allons démontrer le théoréme énoncé dans
I"introduction. Soit donc F un feuilletage holomorphe de CP? dont toutes
les singularités sont non nilpotentes. On a T = O(1 —d) et Ny = OQ2+d),
ou (par définition) d est le degré de F.
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Certaines singularités peuvent ne pas étre réduites, notamment celles
engendrées par un champ de vecteurs dont la partie linéaire admet les valeurs
propres 1 et A € QT. Si A ¢ Nt U N%L la singularité est linéarisable, si au
contraire A € Nt U N—I; sa forme normale (Poincaré-Dulac, voir [CS]) est

(nz + aw)ydw —wdz =0

ot a € {0,1} et n€ {A, {} NNT.

Soit donc X = CP? la résolution (minimale) de ces singularités. Un
calcul simple et explicite montre que chaque composante connexe du diviseur
exceptionnel de 7 est une chaine de courbes rationnelles qui contient une
(—=1)-courbe qui est soit invariante par le feuilletage relevé G (cas non
linéarisable) soit transverse a ce méme feuilletage (cas linéarisable). Les autres
courbes de la chaine sont § -invariantes.

AeENTUL  a=1

AEN+UNL+,a:o

1
ANENT U

Décomposons le diviseur exceptionnel de 7 comme FUD, ou F = Ujl: , Fj
est ’union des (—1)-courbes qui ne sont pas G-invariantes. On a alors |[Br]

I

Tg = 7 (TF) ® OF)
Ng = T (Nr) @ O(—2F — D).

Soit ¥ € ALL(X) le courant positif fermé engendré par le relevé de
f: C — CP? sur X. On suppose que f n’est pas dégénérée, et on normalise
Y de maniere telle que c; (W*(O(l))) -[¥] = 1. On obtient alors

o
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{
a(Tg)- W1 =1-d+> [F]-[¥]

j=1

[
cl(Ng) - [®] <2+d—2) [Fj]-[¥]

j=1

(car [¥]-[D] > 0), et les théoremes 1 et 2 impliquent

et enfin

[
Y IF ¥ >d—1

j=1

[
2) IF]-¥1<d+2

j=1

Ce qui prouve le théoreme.

REMARQUE. Sans hypothése sur les singularités de F le théoreme devient

évidemment faux, on peut par contre espérer affaiblir I’hypothése d > 5 (par
d>27).

[De2]

[GG]
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