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L'Enseignement Mathématique, t. 45 (1999), p. 195-216

COURBES ENTIÈRES ET FEUILLETAGES HOLOMORPHES

par Marco Brunella

Dans un article remarquable et récent [Me]. M. McQuillan parvient à

démontrer la conjecture de Green-Griffiths [GG] pour les surfaces algébriques
de type général dont la classe de Segre (q — c2) est positive: toute application

holomorphe / de C à valeurs dans une telle surface A est dégénérée, i.e.

son image est contenue dans une courbe algébrique. C'est un article qui
fait intervenir les feuilletages holomorphes, puisqu'au cours de la preuve
McQuillan montre que si /: C —* A n'était pas dégénérée alors elle serait

feuille (singulière) d'un feuilletage (singulier) T sur A. ou sur un revêtement

ramifié de A. L'étude de T. basée en partie sur un théorème de Y. Miyaoka
[Mi], mène alors à la contradiction qui prouve la conjecture de Green-Griffiths.

Notre but est de revenir sur la partie "feuilletée" de [Me], en espérant y
apporter quelques clarifications, simplifications et améliorations. Par exemple,
nous verrons que le recours au (difficile) théorème de Miyaoka n'est pas
réellement indispensable, ce qui a l'avantage de permettre de transposer ces

techniques au cas des surfaces rationnelles, où le théorème de Miyaoka n'est
pas très efficace. Pour fixer les idées, nous nous proposons donc de démontrer
le résultat suivant.

THÉORÈME. Soit T un feuilletage holomorphe de CP2 de degré d > 5.
Supposons que chaque singularité de T est non nilpotente, i.e. localement
engendrée par un champ de vecteurs dont la partie linéaire est non nilpotente,
Alors toute application holomorphe f: C — CP2 tangente à T est dégénérée.

Signalons que A. Lins Neto a démontré dans [LN]. sous des hypothèses un
peu plus fortes concernant les singularités de T (mais, par contre, en supposant
seulement d > 2). que les feuilles de éÈcpqsinsiU") sont uniformisées par le
disque, et donc que toute application /: C —> CP2 \ Sing(F) tangente à T

fcc



196 M. BRUNELLA

est constante. Dans notre théorème on laisse la possibilité que / passe par
Sing(T), et même une infinité de fois : cela pourrait (a priori) arriver si T
a une singularité localement engendrée par un champ de vecteurs du type
PZ§-z^rqw^, p,q entiers positifs. Ce caractère singulier de / constitue

(comme dans [Me]) une des difficultés du problème.
Cet article est structuré de la façon suivante. On commence par rappeler la

construction et les propriétés basiques d'un courant positif fermé d> associé

à une courbe entière /: C -4 X non dégénérée et tangente à un feuilletage
T. Puis on évalue les produits d'intersection ci(7» • [O], c\{Njr) • [<É>], où

[<Ê>] G H2(X, R) est la classe de cohomologie de O et 7>, Nsont les

fibrés tangent et normal de T. Si les singularités de T sont réduites (au sens

de A. Seidenberg [Se]) ces produits sont non négatifs, ce qu'on trouve déjà
dans [Me] dans le cas du fibré tangent comme conséquence de son "inégalité
tautologique" (dans le cas du fibré normal le résultat de [Me] est plus faible).
Enfin, en guise d'application, on démontrera le théorème ci-dessus.

Le lecteur attentif verra que la plupart des idées exposées sont déjà présentes
dans [Me]. On peut donc considérer ce texte comme une introduction à (ou

une exégèse de) l'article de McQuillan. Je remercie d'ailleurs le rapporteur
du présent article, dont les critiques constructives m'ont poussé à améliorer
la rédaction.

1. Courbes entières et courants positifs fermés

Soit X une variété projective lisse de dimension n et soit /: C ^ X
une application holomorphe dont l'image n'est pas contenue dans une courbe

algébrique. .Soulignons que, pour le moment, on ne suppose pas que / soit

tangente à un feuilletage holomorphe. On peut associer à une telle courbe

entière un courant positif fermé de la façon suivante, qui est essentiellement

due à L. Ahlfors et R. Nevanlinna et qu'on retrouve explicitement dans [Me,
1.0.3]. Voir aussi [Del] pour d'autres renseignements utiles sur le sujet et [De2]

pour les notions basiques concernant les courants sur les variétés complexes.

Fixons d'abord une forme kàhlérienne u G A1,1^). Pour toute 77 G A2ÇX)

et pour tout r > 0 posons

TfAv)= / J/Ah
J 0 1 JD(t)

où D(t) C C est le disque de rayon t. Considérons les courants positifs
<Dr eAx^{X)' définis par



COURBES ENTIÈRES ET FEUILLETAGES HOLOMORPHES 197

®Yv) AtyV ?] e
Tftr(v)

La famille {0/-};>o est bornée par rapport à la norme usuelle de A1'1®7, on

peut donc choisir une suite {r„} C R+, rn —» +00, telle que Or,( converge

dans la topologie faible pour n +00 vers un courant positif <D G A1'1®7.
Nous cherchons toutefois des courants fermés, et pour cela il faut choisir la

suite {r/2} de façon convenable. Notons A(r) l'aire de /(D(r)) et L(r) la

longueur de f(dD(r)), on a donc

fr dt
TfAüü)= / Ait)—

/o t

et définissons r dt
SfAu)= / L{t)—

Si ß G A1®, le théorème de Stokes et la compacité de X garantissent

l'inégalité

\Tf,(dß)\ < f T f
Jo 1 J dD(t)

où la constante const dépend de ß (c'est sa norme) mais ne dépend pas
de r. Pour avoir un courant O fermé il suffit donc de choisir la suite {r/7}
de manière telle que la propriété géométrique suivante soit satisfaite:

-—— -» 0, -> +00
Tf,r„(U>)

L'existence d'une telle suite est assurée par le lemme suivant, qui est une
variation sur le lemme d'Ahlfors (affirmant lim inf,_+OG jj^ 0).

Lemme 0. On a

lin
>+00 Tf,A)

lim inf ^^ 0

Preuve. Soit /*tu F(t, 6) t dt A dO, où (t,Q) sont les coordonnées
polaires dans C et F est une fonction non négative. On a alors A(r)
/q J027r tF(t, 6) dOdt et la conformité de / implique que L(r) r F(r, 6)^d0.
L'inégalité de Cauchy-Schwarz donne, pour r > 1,

Sf<r(^)-Sftl(u)=[ f tF{t,9)U
J1 Jotr rl* dtO. r r2*

^ dt- '

-Oh "Troll
< (2irlog rY-A^Y- —(2nlog(-'j (a.-) )3
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Il s'agit donc de montrer que

(rlog r)-j-Tf T{u
lim mf ^ 0
r^+ oo Tf^r(üj)2

Remarquons que Tj\r(uj) est strictement croissante et sa croissance est au

moins logarithmique; en particulier 7}>(u;) est divergente pour r —i +00.
Pour tout R > 1 la mesure de [R, +00) par rapport à la mesure est

finie, tandis que par rapport à elle est infinie. Donc il n'existe pas c > 0

tel que djff,r^y > c 77^77 Pour tout r dans un voisinage de +00.

Si {rn} est une suite comme ci-dessus, on pourra alors extraire une sous-

suite {rnk} divergente telle que 0r converge vers un courant positif fermé 0.
Soulignons que 0 ne dépend pas seulement de / mais aussi de la forme

kâhlérienne choisie et, surtout, des suites {rn} et {rllk}. En fait, il n'est pas

indispensable que c0 soit kâhlérienne [Me, 1.0.4.8], il suffit qu'elle satisfasse

la propriété suivante: lu est une (1,1)-forme fermée, semi-positive sur X et

strictement positive sur X \ X, où £ C X est une hypersurface algébrique qui
ne contient pas l'image de /. On appellera semi-kâhlérienne une telle forme.

Si TT : Y —> X est un morphisme birationnel (par exemple l'éclatement
d'un point ou d'une sous-variété de X) et si /(C) n'est pas contenue dans

l'ensemble des valeurs critiques de 7r, on peut relever / en /: C —> Y. Si

uj G A]A (X) est semi-kâhlérienne, u — tt*uj l'est aussi et on peut construire,

comme auparavant, un courant positif fermé O G (quitte à choisir,

peut-être, de nouvelles sous-suites). On a évidemment:

TuAb O

car Tj r(ir*7j) 7/,r(p) pour toute ij G A2(X).

On notera [O] la classe de cohomologie dans //n_1,"_1(X, R) représentée

par 0. Si Z C X est une hypersurface algébrique, on notera [Z] sa classe

dans R) et [0] • [Z] le produit d'intersection avec [0].

LEMME 1. Soit Z G X une hypersurface algébrique qui ne contient pas
Vimage de f, alors

[0] • [Z) > 0.

Remarque. /(C) (f Z n'exclut pas la possibilité que Supp 0 c Z, par
exemple 0 pourrait être le courant d'intégration sur une courbe contenue

dans Z.
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Preuve. Fixons une métrique hermitienne sur le fibré O(Z) et soit

0 G Ald(X) sa courbure multipliée par ^ ; il s'agit de montrer que d>(0) > 0.

Si s est une section de 0(Z) qui s'annule précisément sur Z, on a la formule

de Poincaré-Lelong (voir, par exemple, [De2])

© <5z + ffßlogHi'||2
27XI

où 6z est le courant d'intégration sur Z et l'égalité est au sens des courants. Si

r > 0, la formule de Jensen (voir, par exemple, [Del]) donne (en supposant,

pour simplifier, que /(0) ^ Z)

7>,,.(0) -2- J log ||s(/(re'0)) || dd

- log !;v(/'(0l) Il + Y, ordreZ0 •/'» lQg O
zeDW(Z)ez

Mais log H^ll est supérieurement borné sur X, donc 7},r(0) est inférieurement

borné, uniformément en r. D'autre part, Tfffuj) —* +00 pour r —* +00, ce

qui implique

O(0) lim D
'•„^+oo

Considérons maintenant le cas où X est une surface. Puisque, par hypothèse,

/(C) n'est pas contenue dans une courbe algébrique, on déduit du lemme

précédent que la classe [O] est numériquement effective :

[O] • [C] >0 pour toute courbe C C X.

On sait bien que cela entraîne :

[O]2 > 0.

Supposons à présent qu'on dispose sur la surface X d'un feuilletage
holomorphe T (à singularités isolées), et que la courbe entière /: C —» X est

tangente à T. C'est-à-dire, si Q est une 1-forme holomorphe dans un ouvert
de X qui définit T dans cet ouvert, alors /*Q 0. Le courant positif fermé O

est alors invariant par T au sens suivant : 0(77) 0 pour toute 2-forme 77 qui
s'annule sur T (i.e. qui s'annule en restriction aux feuilles de F). En effet,

pour une telle 2-forme on a ffp 0. Voyons de plus près ce que cela signifie.
Soit p e X un point régulier de T ; choisissons près de p des coordonnées
locales (z\jZ2) dans lesquelles T {dz\ 0}. Dans ces coordonnées O

s'exprime (avec quelques abus de notations) comme JV ^ t 2 Aj^ dzj A dzk,
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où les Ajtk sont des mesures; la condition de ^-invariance implique alors

Ai52 A_2,i A2,2 0, et d<& — 0 implique que ne dépend pas de

Z2•> Z2 et donc que A\ti engendre une mesure transverse invariante pour T
(ou, plus exactement, pour ^|x\SingCF))- Voir [Su] pour plus de détails sur
cette correspondance entre courants positifs fermés J^-invariants et mesures
transverses T-invariantes. On peut donc penser le support K de O comme
une "lamination" (singulière), formée de certaines feuilles du feuilletage et

équipée d'une mesure transverse qui permet d'intégrer les 2-formes le long
de ces feuilles (en obtenant ainsi le courant O). On va résumer cela dans un
lemme.

LEMME 2. Le feuilletage ^|x\Sing(.F) possède une mesure transverse
invariante p dont le support coïncide avec KL\{X\ SingùA*)).

Si p G X \ Sing(T) est un atome de p, la feuille de T passant par

p est nécessairement algébrique, i.e. son adhérence dans X est une courbe

algébrique Cp. En effet, une telle feuille ne peut pas s'accumuler sur elle-
même ou sur une autre feuille de ^IrvSingÇT7) > puisque cela contredirait la
finitude de la mesure transverse invariante. Donc la feuille passant par p
est un sous-ensemble analytique de X \ Sing^T7), et les théorèmes classiques
d'élimination des singularités garantissent que l'adhérence de la feuille dans

X est encore analytique, donc une courbe algébrique. Le courant O "contient"
alors le courant d'intégration sur Cp, avec poids égal à p(p). Puisque T a des

feuilles non algébriques, le nombre de feuilles algébriques est fini, d'après un
théorème classique de Darboux généralisé dans [Jo]. On peut donc décomposer
O de la façon suivante:

O Q>alg + Oaff

où A/ > Os Cj courbe algébrique T-invariante, et

est un courant positif fermé T -invariant et dont la mesure transverse associée

n'a pas d'atomes.

Soulignons que, même si /: C —» X a une image transcendante, il peut
bien arriver que <&aig soit non triviale. Par contre, nous ne connaissons pas

d'exemples (mais il doit y en avoir) où la décomposition ci-dessus est non

triviale, i.e. <Da/g > 0 et Odiff > 0. Puisque O dépend de la suite rn —» -f-oo,

on peut espérer obtenir l'annulation d'un des deux termes de la décomposition

après avoir choisi une sous-suite rnk —» +oo.
Terminons cette section par un exemple qui illustre la théorie précédente.

Soit X CP1 x CP1 et soit T le feuilletage qui s'exprime dans la carte
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affine CxCcI par l'équation

wdz — Xz dw 0

où À G C\R. Les seules feuilles algébriques de T sont les quatres droites

L0 {z 0} Loo {zoo} Mx, {w oo}

sur lesquelles toute autre feuille s'accumule. La courbe entière

est tangente à T et son image est transcendante. On utilisera la forme

kâhlérienne u — ùû\ + eu?, où u\
* fëArv et eu? Les calculs(1-L|- (1+Jiü|-)-

explicites sont possibles mais ennuyeux ; il est toutefois aisé de voir que, pour
une constante convenable c > 0, on a pour t +oo

et donc Tf^fyo) (1 + |À|) cr+o(l) pour r —* +oo. La courbe réelle f{dD(t))
s'approche de plus en plus, pour t —> +oo, de l'union T des quatre droites
T-invariantes. Donc si rj G A2(X) a son support disjoint de T on obtient

que est constant pour t assez grand et par conséquent 7)>(?/) a

une croissance logarithmique en r. Cela signifie que si O G /\1 (X); est un
courant positif fermé dérivé de / on a 0(77) 0 et donc Supp Oc T. Cela
correspond au fait que, pour des raisons dynamiques évidentes, les seules

mesures transverses invariantes sont celles concentrées sur T. On peut alors
développer <D sous la forme

O ao Ôl0 + 00 <$L0o + 6Nq + b^ SNoc

où ao.ci^^bo.boo sont des réels positifs. Puisque c|À|r + o(l),
on a nécessairement O(cui) • D'autre part, ùLo(cui) SLoc(ujx) 0,

1) ^00(^1) 27t, donc 27t(Z?o + ^00) i±\\\ • ^e façon analogue,
avec cu2 à la place de cuj, on arrive à 27r(a0 + a^) Enfin, raisons
de symétrie imposent a0 et b0 et donc O coïncide forcément
avec le courant

f:C^X /(

47r( 1 + + àLaa + |A[<5/v0 + AI (5/y^



202 M. BRUNELLA

À remarquer que le quotient entre le coefficient de 6n0 et celui de 6l0 est

égal au quotient entre la valeur propre de T en (0, 0) le long de No et celle
le long de Lo.

Si dans le même exemple on prend À G R (et À ^ Q pour avoir des feuilles
transcendantes) les feuilles de T sont denses sur des hypersurfaces réelles et

la dynamique de T sur ces hypersurfaces ressemble à celle des feuilletages
linéaires irrationnels des tores. Le courant O sera alors uniformément distribué

sur une de ces hypersurfaces.

Enfin, on peut construire de nouveaux exemples à partir des précédents par
des transformations birationnelles. On aura ainsi des exemples où la courbe

entière passe une infinité de fois à travers une singularité du feuilletage.

2. L'inégalité tautologique et ses conséquences

On continue avec les hypothèses et les notations de la section précédente :

• X est une surface algébrique lisse;

• T est un feuilletage holomorphe sur X, à singularités isolées;

• / : C —» X est une courbe entière non dégénérée et tangente à T ;

• O G A1,1 (A)' est un courant positif fermé associé à /.
En plus, on supposera que les singularités de T sont réduites au sens

de [Se] (voir aussi [CS]) : au voisinage de chaque point singulier, T est

engendré par un champ de vecteurs dont la partie linéaire a pour valeurs

propres 1, A, avec À ^ Q+ .Si À ^ 0 le point singulier est simple, sinon

c'est un nœud-col. Ainsi chaque singularité réduite a une multiplicité d > 1, et

d > 1 si et seulement si la singularité est un nœud-col. Une séparatrice d'une

singularité est une courbe analytique définie au voisinage de la singularité,

tangente au feuilletage et passant par la singularité. On utilisera le fait qu'une
singularité simple a exactement deux séparatrices (l'une transverse à l'autre),
tandis qu'un nœud-col a une "séparatrice forte" tangente à l'espace propre
de valeur propre 1 et, parfois, une "séparatrice faible" tangente à celui de

valeur propre 0 [CS], [MR]. L'étude des feuilletages à singularités réduites

est justifiée par le théorème de réduction des singularités de Seidenberg [Se] :

tout feuilletage peut être transformé en un feuilletage à singularités réduites

par une suite d'éclatements.

Du point de vue global, on peut associer à T (et malgré ses singularités)

un fibré tangent 7> et un fibré normal Njr : dans le langage des diviseurs,

7> (resp. N*jr, dual de Nj?) est représenté par la différence entre le diviseur
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des zéros et le diviseur des pôles d'un champ de vecteurs méromorphe (resp.

d'une 1-forme méromorphe) qui engendre T. Nous renvoyons à [Br] pour

les propriétés les plus basiques de ces fibrés (par exemple, leur comportement

par éclatements).

Dans cette section nous allons esquisser, d'après [Me], la preuve de

l'inégalité suivante.

THÉORÈME 1 [Me, §11.3]. ct(7» • [O] > 0

En fait, nous nous contenterons de déduire cette inégalité de Y inégalité

tautologique raffinée [Me, II.3.3.2], dont la preuve est (presque) indépendante

du feuilletage et sort un peu du cadre de ce texte.

Soit PTX la projectivisation du fibré tangent de X ; c'est un CP1 -fibré

sur X, dont on notera tt: PTX —» X la projection. Sur PTX on dispose du

fibré tautologique Üp7x(—1), qui a pour degré —1 sur chaque fibre de n et

qui jouera un rôle essentiel dans la suite. Rappelons la formule (tautologique)
suivante : si C C X est une courbe algébrique lisse et si C C PTX est son

relevé naturel, on a c\(0?tx(—Y)) • [C'] — x(C).
Le feuilletage T définit une section de PTX au dessus de X \ Sing(Jr),

dont l'adhérence X' C PTX est appelée graphe de T. Si p G SingtF), X'
contient toute la fibre ir~x(p). Si p est simple, X' est lisse au voisinage de

?T~x(p) et la projection tt: X' —» X s'identifie au voisinage de ir~l{p) avec
l'éclatement de I en Si p est un nœud-col de multiplicité d, X' a sur
7r~l(p) un point singulier de type Ad- \. En effet, dans des coordonnées locales
convenables le feuilletage T au voisinage d'un nœud-col de multiplicité d
est donné par l'équation (forme normale de Dulac, voir [MR] ou [CS])

[z (1 + Xiud~l)+ w F(z.w)]dw - 0.

où À G C et F est une fonction holomorphe qui s'annule en (0.0) avec ses

dérivés jusqu'à l'ordre d — 1. Les coordonnées z-w induisent au voisinage
de 7r~1 (p) des coordonnées naturelles z.w.ffi où £ ^ G CP1, et dans ces
coordonnées le graphe X' est donné par l'équation

wd[z(1 + \wd~1

+ w F(z. UO] Ç •

Un changement de variable z ^ z! ramène cette équation à la forme wd
et on voit que si £ 7^ 0 le point (0.0,0 est régulier, tandis que (0.0.0) est
une singularité Aci-\. Donc le graphe X' peut avoir des singularités, mais
cela ne nous gênera pas beaucoup, à la limite on pourra remplacer X' par sa
résolution.
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Pour tout p G Sing(JT), de multiplicité dp, soit Ep — iï~x{p), regardé

comme courbe dans X'. On vérifie aisément que dpEp est un diviseur de

Cartier, qui définit donc un fibré linéaire ö(dpEp) sur X'. Le degré de

ce fibré sur Ep est égal à —1 (car [dpEp]2 —dp dans X'). D'autre part,
1) a degré —1 sur chaque Ep et coïncide (par tautologie) avec 7r*(7y)

sur X' \{JpEp. On en déduit que

Opixi- 1)U/ K*{Tjr) (g) 0( ^2 dpEp)

peSmg(T)

On relève la courbe entière / sur PIX à travers sa "dérivée" f : C —> P7X.
Bien sûr, l'image de f est dans X' car / est tangente à T. On peut
associer à f un courant positif fermé O7 G Ax'x{X')', comme dans la section

précédente, et ir*07 <D. L'inégalité tautologique [Me, 1.0.2.5] exprime alors,

intuitivement, la "non-négativité de la caractéristique d'Euler" de [O] :

c,(CW— 1)) -[O']>0.
Voici l'idée de la preuve [Me, 1.1.1]. Soit Y la variété (de dimension 4)
obtenue à partir de X x X par éclatement de la diagonale A C X x X, et

soit Z C Y le diviseur exceptionnel de l'éclatement: c'est un CP1-fibré sur

À ~ X, canoniquement isomorphe à P7X, et le fibré 0(Z) G Pic(L) restreint à

Z coïncide avec le fibré tautologique: Oytx(—1) — 0{Z)\z. Soit/: C —» XxX
définie par f(x) (/(x),/(v)). Pour tout f G C proche de 1 on peut déformer

/ de la manière suivante: on pose /): C —> X x X, ft(x) (f(tx)J{x)). A
la différence de f, la courbe entière ft n'a pas son image contenue dans la

diagonale À, on peut donc la relever sur Y et on la notera alors ft. On associe

à ft un courant positif fermé G A1,1 (y)7 et le lemme 1 donne [OJ/Z] > 0.

Pour t 1 la courbe ft "converge" vers la courbe f : C P7X ex Z c Y,

on a donc [O7] • [Z] > 0, qui est l'inégalité cherchée.

Après avoir défini

v(<S>,p) [<&'] • > 0

on peut réécrire l'inégalité tautologique sous la forme

ci(7» •[<!>]>- X X®,/?) •

p6Sing(G")

Une singularité p est dite petite [Me, II.3.3.1] si elle est simple et

si ses deux séparatrices locales font partie de deux courbes algébriques

(nécessairement invariantes) qui s'intersectent seulement en p. Puisque / est

non dégénérée, son image n'est pas contenue dans ces courbes algébriques
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(mais, bien sûr, Supp(O) peut contenir ces courbes) et donc / ne passe pas

à travers la singularité. Cela permet d'améliorer l'inégalité tautologique, et on

obtient ainsi Y inégalité tautologique raffinée [Me, II.3.3.2] :

ei (7» -m>-
pGSING(^")

où SING(J^) c Sing(T) est l'ensemble des singularités qui ne sont pas petites.
Comme justification partielle de cette amélioration, remarquons qu'elle serait

évidente si on pouvait démontrer que 0 si p est petite. Dans le

cas où ®aig 0 (i.e. O <0^ cette annulation semble avoir lieu si le

quotient des valeurs propres de T en p n'est pas réel positif (ce qui serait

déjà suffisant pour la suite) : voir les commentaires après le lemme 6 de la
prochaîne section.

Passons maintenant à la preuve du théorème 1. Pour simplifier les notations,

supposons que T a une seule singularité, p. Soit la surface obtenue par
la construction suivante:

• si p est simple, Z(0) est l'éclaté de X en p ;

• si p est un nœud-col, X{0) est le produit de dp éclatements, chaque
éclatement au seul point au dessus de p où le feuilletage relevé a un
nœud-col :

Le diviseur exceptionnel de X(0) -> X contient donc une courbe rationnelle
d autointersection —1 et une chaîne de dp — 1 courbes rationnelles d'auto-
intersection —2, la contraction desquelles produit la singularité Ad _i du
giaphe X La surface X^ n est donc rien d'autre que la résolution minimale
de X'.

Comme d habitude, on relève f sur X^ et on construit G A1,1(X^)/
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LEMME 3. [3>(°)]2 < [<|)]2 - -f z/(<I> n)2.
Up

Preuve. Considérons d'abord le courant intermédiaire O7 G A1'1(Z/)/ :

puisque n*®' O et [dpEp] • [Ep] -1, on a

[O'] tt*[0] - • [Ep]

et donc
1

m* =*m- -ripr¬
ap

Si dp l on a fini car X' — Z(0). Si dp > \ on passe de X' à X(0) par
suite de dp — 1 éclatements, et puisque O(0) se projette sur O' on obtient

[O(0)]2 < [O']2

une

On peut itérer cette construction. Le feuilletage JCW sur x(0) possède deux

singularités (avec dqm 1, dqm dp sur le diviseur exceptionnel

de X(0) - X qui ne sont pas aux coins de ce diviseur et qui sont donc les

seules susceptibles d'être non petites. Soit X(1) obtenue par la construction

précédente appliquée à ces deux singularités, X(2) par la même construction

appliquée aux deux seules singularités q\l\ q^ de susceptibles d'être

non petites, and so on.

Le même argument que celui du lemme 3 donne alors l'inégalité suivante,

avec notations évidentes et pour n > 1 :

[<J)(«}J2 < [$(»-D]2 __ {^(n-D ,q("~]))2+

et par conséquent:

[<&(n)]2 < [O]2 - {yz^O,/?)2 + + yu(<I>(/,,?2))2}} •

n— 1

.7=0
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L'observation fondamentale est alors la suivante: puisque [0(n)]2 > 0 pour

tout n >0,la somme Yq=o<lui aPParaît ci-dessus est majorée par

[O]2 —j-zy(0,z?)2 pour tout n > 0, et donc
dp

7y(0(//). cf^) 0 pour n —> +00

Le feuilletage T{n) sur X(n) a (au plus) deux singularités non petites, qet
q^\ et de l'inégalité tautologique raffinée on déduit

cx(J»• [<&«] > —f{3>(n),qf) - v(&n\

Mais puisqu'on éclate toujours des singularités réduites on a »
(7r(n))*(7y) (où est la projection de sur X), et donc c\(Tjrw)- [0(n)]

c\(Tf) • [O]. On en déduit que

ci(7»-[O]>0.
C'est le théorème 1. Tout cela démontre (s'il en était besoin) que les

éclatements ne servent pas seulement à résoudre des singularités...

3. Le degré du fibre normal sur la courbe entière

Avec les mêmes hypothèses et notations qu'auparavant, nous allons ici
démontrer le résultat suivant, qui précise [Me, II. 1.4.1].

Théorème 2. c{(Njr) • [O] > 0

On va d'abord se débarrasser de la composante algébrique
Puisque T est à singularités réduites, C U;=1 Q est une

courbe à croisements normaux : elle est T-invariante, donc ses singularités sont

contenues dans Sing{T) et au voisinage d'une de ses singularités elle coïncide
avec l'union des séparatrices de T. On a C\(Njr) [Cj] — [Cj]2 +Z(C;, T), où

Z(Cj,T) est la multiplicité totale des singularités de T le long de C) [Br,
lemme 3], et cette multiplicité est évidemment au moins égale à

Donc c\{Njr) • [Cj] > [Cj] - [C] et par conséquent

C\(NJT) • [Ofl/g] > • [C]

D'autre part, la classe [O] est numériquement effective et donc [Oa/g] • [C] >
diff] ' [O]. On en déduit:

C\(Njr) • [O] > Cj (Njr 0 O(-Cy) • [®diff]
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Notre but est donc de démontrer

ci(^®O(-Q)-[%]>0.
Pour cela, nous allons d'abord construire une 2-forme fermée 0 qui représente
la classe de Chern de Njr®0(—C), d'après la méthode classique qui est à la
base de tous les théorèmes d'annulation ou d'indice (Baum-Bott, Camacho-

Sad, etc.).

On peut choisir un recouvrement ouvert {Uk{ de X, des 1-formes

logarithmiques G £2!(log C){Uk) et des (l,0)-formes ßk G Al>0(Uk) telles

que :

i) dans Uk, T est représenté par fkÇlk 0, où fk est une équation de C

dans Uk (donc fk Qk G Ol(Uk) est une 1-forme holomorphe à singularités
isolées) ;

ii) chaque Uk contient au plus une singularité de T ;

iii) d£lk ft A Q.k dans Uk\Vk, où Vk C Uk est disjoint de Ut pour
tout l^k.

Il est clair que de tels {Uk,Qk, ßk} existent, voici la construction explicite
qu'on utilisera plus loin. Au voisinage d'un point régulier T est donné (en

coordonnées convenables z,w) par dz — 0, on peut choisir alors Q dz

ou £2 —, selon la structure de C au voisinage du point, et ß 0. Au

voisinage d'un point singulier T est donné par adw — bdz 0, avec a et b

holomorphes et {a b 0} {(0,0)}. Si le point singulier n'appartient pas
à C on choisira £2 adw — bdz et

ß — F • a\
9 {àdz + b dw),

\a\ + \b\

où F est une fonction C°° réelle qui s'annule au voisinage du point singulier
et qui vaut 1 hors d'un voisinage (aussi petit que l'on veut) de ce même

point. Si le point singulier est un point double de C, on peut supposer que
dans les coordonnées fixées on a C {zw 0}, et donc a est divisible par
z et b par w car C est T-invariante. On choisira alors Q - ^ ^ ^ et

- + b -ß F-~- S ~(àdz + b dw).
\a\2 + \b\2

b

Le cas intermédiaire où le point singulier appartient à un point lisse de C est

laissé au lecteur.

Les ouverts Uk seront donc des petites boules centrées sur des points

réguliers ou singuliers, et Vk C Uk des boules encore plus petites, ou même

vides dans le cas des points réguliers.
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Sur chaque intersection Uk H Uj on a

Qk gkjQj gkj G ö*(Uk n Uj)

et {gkj} G Hl(X. Ö*) est un cocycle définissant le fibré Njr0Ö{—C). Pour se

convaincre de cela, notons L le fibré défini par {%}. Le fibré L 0 0(C) est

donc donné par le cocycle {gkjj}. Les relations fk Qk gkj j fj Ulj montrent

que les fkQ.k définissent une 1-forme holomorphe à valeurs dans L 0 O(C), et

plus exactement une section de AOf 0 L 0 G(C) car les fkQk engendrent T.
Cette section n'a aucun zéro, puisque chaque fk£lk est à singularités isolées,

donc elle trivialise Njr 0 L 0 (9(C), d'où L Njr 0 O(-C).
En différentiant la relation ci-dessus et grâce à dQk ßk A Qk, qui est

satisfaite sur les intersections, on obtient

— ßk-ßj + 7
9kj

où jkj 1 A' '"(Uk H Uj)s'annulentsur T et forment un cocycle. On peut
trivialiser ce cocycle, car on est en train de travailler avec des formes C°° :

Ikj 1k - lj, 1k AL0(Uk),Jk\jr =0. Ainsi

- (ßk + 1— (ßj +
9kj

et donc la 2-forme fermée © G A2(X) localement définie par

© J~.d(ßk+ 1k)
l'ai

représente C]{Njr ® 0{-C)). Remarquons qu'elle n'est pas (en général) de

type (1,1).

Pour évaluer cßNp®O(-C)) [<D diffilfaut intégrer 0 sur la courbe
entière /, ou mieux il faut intégrer 0 sur la lamination Supply) par
rapport à la mesure transverse invariante Mais T 0 et dßk= 0
hors de Vk, grâce à dQk ßk A Q.k,etl'intégrale est donc localisée au
voisinage des points singuliers. L'expression <1 est sans ambiguïté et
avec ces notations on peut résumer la discussion dans le lemme suivant.

LEMME 4. On a

c\(Njr®C>(—Q) • [<t>rf,y] — $>dijf(dßk),

où lasomme est sur tous les k tels que Uk est centré sur une singularité de
T dans K(kff.
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Tout cela marche sans restriction sur les singularités de T, pourvu que
C soit à croisements normaux. Mais notre feuilletage n'a que des singularités
réduites, et en plus, d'après le lemme 4, seules celles dans Kdiff nous
intéressent. C'est le moment d'exploiter à fond le fait que la mesure transverse

Hdiff associée à n'a pas d'atomes. On renvoie à [CS] et [MR] pour une

description de la structure qualitative des singularités réduites.

Si g G Sing(J^) est un nœud-col, on voit sans peine que toute feuille
(locale) de T s'accumule sur la séparatrice forte, sauf la séparatrice faible
(si elle existe). Pour voir cela, reprenons la forme normale de Dulac d'un
nœud-col de multiplicité d, dans laquelle on supposera de plus que F 0

(ce qui est toujours possible dans des coordonnées formelles, voir [MR]) :

z( 1 + Xwd~1 dw — wddz 0

Par intégration directe, on trouve que les feuilles sont les graphes des fonctions

(multiformes si À n'est pas un entier)

z cwxe (d-Dwd-i
5 cGC,

plus la séparatrice forte {w 0}. Pour c 0 on obtient la séparatrice faible

{z 0}, et toute autre feuille contient {w 0} dans son adhérence. On

trouve aussi que l'holonomie de {w 0} est du type

w ^ w F 2iri wd + o(wd).

Ces propriétés qualitatives de T persistent quand F ^ 0 (sauf l'existence
de la séparatrice faible), voir [MR] pour plus de détails. L'holonomie de la

séparatrice forte est assez riche pour forcer toute mesure transverse invariante
à se concentrer sur la même séparatrice, et donc à être atomique. Bref, Kdijf

ne contient pas de nœuds-cols.

Des considérations holonomiques du même genre excluent les singularités
engendrées par un champ de vecteurs dont le quotient des valeurs propres
n'est pas réel et montrent donc que toute singularité p de T dans Kdiff est

d'un des deux types suivants:

I) au voisinage de p, T est engendré (en coordonnées convenables) par
(1 + )zdw — (À + .)wdz, avec À G R+ \ Q+ ; le théorème de

linéarisation de Poincaré permet même de linéariser cette 1-forme;

II) comme dans I) mais avec À G R_ ; si À G Q~ la singularité est sans

doute linéarisable, si À G R~ \ Q~ elle l'est formellement mais pas
nécessairement analytiquement.
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LEMME 5. Dans le cas I) on a

Preuve. Si C a un point double en p on a ^ ^ - À- fermée

et donc on peut prendre ßk 0. Si p ^ C on a Qk zdw — Àtcdz et

ßk m^^|2(I& + Xwdw) (et si C a une seule branche à travers p
on a la même expression mais avec 1 ou À à la place de 1 + À). On peut

supposer que Uk est un petit bidisque {\z\ < e.\w\ < e} autour de p, avec

Sk dUk (lissé aux coins) transverse à T. Donc C 7Ff\Sk est un feuilletage
réel orienté de dimension 1 et sans singularités (l'orientation étant induite par
celle des feuilles complexes de 2F\uk), et pdijj induit une mesure transverse

£-invariante qu'on notera par la même lettre. Par Stokes, calculer O

revient à calculer l'intégrale de le long de C par rapport à pdlfj. Mais

ßk I

_
(1 + A) dz

ct
ßk_

27ri\{\z\=e.\w\<e}njr 27ri z 2ni
(1 + À ') dw

{|u;|=e,|£|<e}n^" 2TTZ W

sont positives le long de £, d'où la conclusion cherchée (avec stricte
inégalité).

Lemme 6. Dans le cas II) on a

Re O= 0
" Z7TI

Preuve. Comme dans le lemme précédent, il suffit considérer le cas

p £ C, les autres cas étant presque identiques. Donc £lk adw - bdz, avec
a z( 1 + b Xw (1 + À G R~ et ßk Fk (cidz + b dw).
Si (az + bw)(0^ 0) 0 (i.e. À —1) on peut en réalité choisir ßk holomorphe
(dans tout Uk ce qui donne bien sûr &diff(dßk) 0 : il suffit prendre
ßk — Adz + Bdw, où A et B sont des fonctions holomorphes satisfaisant
az+bw Aa+Bb. On supposera donc À^-l. Cette fois-ci le feuilletage n'est
pas transverse à des petites sphères autour du point singulier, et c'est justement
sur cela qu'on va s'appuyer. Soit 71 le feuilletage réel 1-dim tangent à T dans
Uk \ {p} engendré par le noyau de p\T, où 77 Im[^^_ (ödz + ^dw)].
On vérifie aisément que sur chaque séparatrice {z 0} et {w 0} ce
feuilletage 71 est de type radial, tandis que hors des séparatrices les feuilles
de 71 "glissent" à côté de p. Plus exactement, on peut choisir le bidisque Uk
de manière telle que :
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a) dUk est l'union de deux tores solides fermés T\, T2 dont les intérieurs
sont transverses à 1Z ;

b) dT\ dT2 est formé des points de dUk où 1Z est tangent extérieurement
à Uk ;

c) les feuilles de 1Z dans Uk et hors des séparatrices établissent un difféo-
morphisme cj) entre T\ et T2 privés des intersections avec les séparatrices.

Sur 7j et T2, T induit des feuilletages orientés C\ et C2 avec mesures
transverses invariantes pi et p2. Le difféomorphisme <fi échange ces deux

feuilletages, préservant les mesures transverses mais renversant les orientations.
On a ^{rj\c2) p\cx, car p\p est fermée et s'annule sur Té, et donc

(ß*(lmßk\c2) toÂki • Tout cela entraîne que l'intégrale de lmßk le long
de C\ par rapport à fi\ est opposée à celle le long de C2 par rapport à ji2
(le fait que <fi n'est pas défini entre les intersections avec les séparatrices n'a
aucune importance, car ces séparatrices sont de mesure nulle). D'après Stokes

on a alors O^j(ImJ^) 0.

Il nous semble qu'on devrait pouvoir démontrer, dans ce dernier lemme,
Y annulation de ^>dijf{dßk) et non seulement de sa partie imaginaire. Dans [Me,
II. 1.4] on trouve des estimations en fonction du nombre de Lelong de <E>^

en p (qui est lié au nombre de la section précédente), et il est bien

possible que ce nombre s'annule toujours dans le cas II), puisque dans ce cas

les feuilles du feuilletage glissent à côté de p (tandis que dans le cas I) elles

vont "tout droit" vers p). On vérifie tout cela dans le cas linéarisable, par
calcul direct, mais nous ne savons pas si les nombres en question sont des

invariants formels (puisque nous ne savons pas ce qu'est la transformée d'une

mesure par un difféomorphisme formel).
En tout cas, les lemmes 4, 5 et 6 suffisent pour démontrer que

c\(Nf ® Ö(—C)) • [Qdiff] > 0 et donc le théorème 2. On a même l'inégalité
stricte dès que Kdijj contient au moins une singularité de type I) qui ne soit

pas un point double de C.

P

w

L^T

l\ G £\
h h G P>2
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Remarquons que dans cette preuve on a utilisé seulement le fait que

O est un courant positif fermé .F-invariant et numériquement effectif; sa

provenance d'une courbe entière est inessentielle. Remarquons aussi (voir

[De2]) que l'effectivité numérique est automatique si <&aig — 0-

Les théorèmes 1 et 2 et la relation Kx T^r ® où Kx est le fibré

canonique de X, impliquent:

Corollaire 1. ctyX) • [O] > 0.

Si O était une courbe algébrique lisse D on aurait la formule d'adjonction

ci CO • [D] [D]2 + x(P) et Ie corollaire serait conséquence de [D]2 > 0

(effectivité numérique) et xiP) —
0 (inégalité tautologique). Naïvement, dans

tout ce qui précède on a donc remplacé la formule d'adjonction par sa version

feuilletée c\(X) + Ci(7», [D]2 par c\(Njd) • [O], et xiP) Par

Gi(7»-[0].

COROLLAIRE 2. X n'est pas de type général.

En effet, le fibré canonique d'une surface de type général est presque
ample (i.e., ample hors d'une collection finie de courbes rationnelles d'auto-
intersection négative, qui sont négligeables car contractiblcs), et donc ([Me])
on aurait cj(X) • [O] < 0.

Ceci permet d'éviter, dans la preuve de McQuillan de la conjecture
de Green-Griffiths, le recours au théorème de semi-positivité générique
de Miyaoka [Mi]. Pour prouver cette conjecture McQuillan considère une
courbe entière /0: C Xo à valeurs dans une surface de type général. Si

c](Xq) > C2CG), d construit un revêtement ramifié X —» Xo sur lequel le

relevé /: C —> X est tangente à un feuilletage à singularités réduites. Puisque
X est encore de type général, le corbllaire 2 implique que /, et donc /o, est

dégénérée.

4. Feuilletages sur le plan projectif

Dans cette dernière section nous allons démontrer le théorème énoncé dans

l'introduction. Soit donc T un feuilletage holomorphe de CP2 dont toutes
les singularités sont non nilpotentes. On a 7> (9(1 - d) et Nj=- 0(2-h d),
où (par définition) d est le degré de T.
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Certaines singularités peuvent ne pas être réduites, notamment celles

engendrées par un champ de vecteurs dont la partie linéaire admet les valeurs

propres 1 et À G Q+. Si À ^ N+ U p la singularité est linéarisable, si au

contraire À G N+ U p sa forme normale (Poincaré-Dulac, voir [CS]) est

(nz + awn) dw — w dz 0

où a G {0,1} et G {A, }}nN+.
Soit donc X CP2 la résolution (minimale) de ces singularités. Un

calcul simple et explicite montre que chaque composante connexe du diviseur

exceptionnel de tt est une chaîne de courbes rationnelles qui contient une

(—1)-courbe qui est soit invariante par le feuilletage relevé Q (cas non

linéarisable) soit transverse à ce même feuilletage (cas linéarisable). Les autres

courbes de la chaîne sont Q -invariantes.

Décomposons le diviseur exceptionnel de tt comme FUD, où F (JjLj
est l'union des (—1)-courbes qui ne sont pas Q -invariantes. On a alors [Br]

Tç ^*(7» 0 O(F)

Ng 7T*(Njr) (g) 0(-2F - D).

Soit G Aljl(Xy le courant positif fermé engendré par le relevé de

/: C —» CP2 sur X. On suppose que / n'est pas dégénérée, et on normalise
SP de manière telle que c\ (7r*(ö(l))) • [SP] 1. On obtient alors
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ci (7g> • m i - d+ •m
j= i

/

ci(jvç)-m <2+d-2^[F;]-m
7=1

(car [¥] • [D] > 0), et les théorèmes 1 et 2 impliquent

/

• m > d -1
7=1

/

<d + 2

7=1

et enfin

d<4.
Ce qui prouve le théorème.

Remarque. Sans hypothèse sur les singularités de T le théorème devient

évidemment faux, on peut par contre espérer affaiblir l'hypothèse d > 5 (par

d> 2
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