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ON THE CONSTRUCTION OF GENERALIZED JACOBIANS

by LEI Fu

ABSTRACT. We give a modern exposition of the construction of generalized
jacobians using Weil’s method.

0. INTRODUCTION

Generalized jacobians of algebraic curves are treated in detail in [S]. In this
book Serre uses the terminology “‘generic points” that is developed in Weil’s
Foundations of Algebraic Geometry. Nowadays one uses the terminology in
Grothendieck’s Eléments de Géométrie Algébrigue, and it is hard for students
studying algebraic geometry to get used to Weil’s terminology. At least my
personal experience tells me so. So in this paper we use Weil’s method and
Grothendieck’s language to construct generalized jacobians.

In §1 we state a theorem of Grothendieck that is used throughout this
paper. In §2 we list some basic properties of relative effective Cartier divisors.
We construct a birational group in §3 and show how to get an algebraic group
from a birational group in §4. In §5 we prove some fundamental properties
of generalized jacobians. The main results are Theorems 1 and 2. In §6 we
prove that the generalized jacobian of a curve is the Picard scheme of the
curve. The Appendix contains the proof of a technical proposition.

While preparing this note, I was helped by [A], [BLR], [Mi] and [S].
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I. A THEOREM OF GROTHENDIECK

The following theorem is a special case of Grothendieck’s theorems, and
the proof can be found in [Mu] §5, [H] §3.12, or [EGA] III, §7.7.5, 7.9.4.

THEOREM 1.1. Let q: V — T be a proper flat morphism of noetherian
schemes and let L be an invertible sheaf on V. For each t € T denote the
fiber 'V @7 spec(k(t)) of g at t by V,, where k(t) is the residue field of T
at t. Denote the inverse image of L on V; by L;.

(@) The function t — x(L;) = > (—1)dimyy H'(V,, L) is locally constant

l
on T.

(b) For each i, the function t— dimyy H'(V,,L;) on T is upper semicon-
finuous.

(¢) If T is reduced and connected and if t — dimy H{(V,, L,) is a constant
function on T, then R'q.L is a locally free sheaf on T and the map
Rig.L Ro, k() — H(V,, L) is an isomorphism.

(d) If H(V,, L) =0 forall t € T, then R'q.L = 0 and q.L is a locally free
sheaf. Moreover the formation of q.L commutes with any base change.

2. RELATIVE EFFECTIVE CARTIER DIVISORS

Let g: X — T be a morphism of noetherian schemes. A relative effective
Cartier divisor on X/T is an effective Cartier divisor on X that is flat over
T when regarded as a closed subscheme of X. When T = spec(R) is affine,
a closed subscheme D of X is a relative effective Cartier divisor if and only
if there exists an open affine covering U; = spec(R;) of X and g; € R; such
that

(a) DN U; = spec(Ri/(9))

(b) g; is not a zero divisor;

(c) R;/(g:) is flat over R.

REMARK 2.1. Let D be an effective Cartier divisor on X/T, let Z(D)
be the sheaf of ideals defining D, and let L(D) be the invertible sheaf
corresponding to D. We have L£(D) = Z(D)~'. The inclusion Z(D) C Oy :'
induces Oy C Z(D)~! = L(D), hence a section sp of L(D).
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The map D — (L(D), sp) defines a one-to-one correspondence between the
set of relative effective Cartier divisors on X/T and the isomorphism classes
of pairs (L,s), where L is an invertible sheaf on X and s is a global section
of £ such that the map s: Oy — £ induced by the section s is injective and
L/sOx is Or-flat.

The proof of the following lemma is straightforward and is left to the
reader :

LEMMA 2.2.

(@) If Dy and D, are relative effective Cartier divisors on X /T, then so
is D+ D».

(b) Let Dy and D, be two relative effective Cartier divisors on X/T and
let I(Dy) and I(Dy) be their ideal sheaves. If T(D;) C Z(D), then D, — D,
is also a relative effective Cartier divisor on X/T.

(c) Let T" — T be a base extension and let X' = X x7 T'. If D is
a relative effective Cartier divisor on X/T, then its pull-back to a closed
subscheme D' of X' is a relative effective Cartier divisor on X' /T’ .

LEMMA 2.3. Assume q: X — T is flat. Let T be a coherent sheaf of
ideals of Ox and let D be the closed subscheme of X defined by I. If for
every point x € D, the ideal I, of Ox. is generated by one element g,
whose image in Oy R0r . k(q(X)) is not a zero divisor, then D is a relative
effective Cartier divisor.

Proof. 1t suffices to show that ¢, is not a zero divisor in Ox. and
that Ox ,/(gy) is flat over Or,40- This follows from [EGA] §0.10.2.4 by
taking A = Or 4, B = Ox,, M = N = Ox.y, and u: M — N to be the
homomorphism g,: Oy, — Ox,, defined by the multiplication by g,.

3. THE CONSTRUCTION OF A BIRATIONAL GROUP

Let X be a nonsingular irreducible projective curve over an algebraically
closed field k. A modulus m supported on a finite subset S of X is a divisor

of the form m = > npP with each np > 0. For any rational function f on
PES

X, we write f =0 mod m if vp(f) > np for every P € §, where vp is the
valuation defined by P. Two divisors D; and D, on X prime to S are called
m-equivalent if there exists a rational function f satisfying f —1 =0 mod m
such that D; — D, = (f). If this holds, we write Dy ~y Ds. Define a ringed
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space (Xm,Ox,, ) as follows: The underlying set of X, is (X —S) U {Q}.
Define
Ox,o=k+{f|f=0 modm}

and for every x € X — §, define Oy, , = Ox,. One can show that when
deg(m) > 2, the ringed space Xy, is a singular curve with a unique singular
point O and its normalization is X. (It is easy to see that when deg(m) < 2,
the ringed space X, is identified with X itself.) For a divisor D of X prime
to S, we put

Lu(D) = H'(Xm, L), In(D) = H'(Xn, L),

where L., is the invertible sheaf on X, corresponding to D. Denote the
dimensions of Ln(D) and I,(D) by [,(D) and i,(D), respectively. The
Riemann-Roch theorem states that

l(D) — i (D) = deg(D) + 1 — 7.

In this formula, 7 is the sum 7 = g 4 0, where g is the genus of X and
0 = deg(m) — 1. All these results are proved in [S], Chapter IV.

For convenience, a closed point on a scheme is just called a point.

Let T be a connected k-scheme. Consider the Cartesian square

Xy X T — Xn

d l

T —— spec(k) .

Since X, is proper and flat over spec(k), the morphism ¢ is also proper and
flat. Let-D be a relative effective Cartier divisor on (X, x T)/T supported on
(X — Q)X T and let £ be the invertible sheaf corresponding to D. Applying
Theorem 1.1 (a) to the morphism ¢ and the invertible sheaf £, we conclude
that ¢t — x(L,) is a constant function on 7. By the Riemann-Roch theorem,
we have x(L,) =deg D;+1—m. So deg(D,) is also a constant. This constant
is called the degree of D. Denote by Div(”)(T) the set of all relative effective
Cartier divisors of degree n on (Xy, x T)/T supported on (X, — Q) x T.

Let (X —$)™ be the n-th symmetric power of X — S, i.e., the quotient
of (X —S)* by the action of the n-th symmetric group &,, where &, acts
on (X — 8)" by permuting the factors. In the Appendix we show that there
exists a relative effective Cartier divisor D € Div"™ ((X — $)), called the
universal relative effective Cartier divisor, whose restriction to the fiber of
the projection Xpm X (X — )W — (X —H® at Py + -+ P, € (X — ™ is
the divisor Py + --- + P, of X,,. Moreover, we have
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PROPOSITION 3.1. The functor T +— DivT) from the category of k-
schemes to the category of sets is represented by the symmetric power (X —5).
More precisely, for any relative effective Cartier divisor D of degree n on
(Xm X T)/T supported on Xy — Q) X T, there exists a unique morphism
f:T — (X —8" such that the pull-back of D by id x f is D.

The proof of this proposition is given in the Appendix. The morphism
T — (X — 8™ can be described as follows: For every t € T, identifying the
fiber of ¢: Xyu X T — T at t with X,,,, we may regard the restriction D, of
D to the fiber at ¢ as an effective divisor of degree n on X, supported on
X — Q. But this kind of divisor can be thought of as a point in (X — S)™.
The morphism T — (X — $)® is just s D;.

LEMMA 3.2. Let D be a divisor of X prime to S such that i,(D) > 1.
Then there exists an open subset U of X — S such that for every P € U, we
have inw(D + P) = in(D) — 1.

Proof. 1If P ¢ Supp(D)U S, then the dual vector space I,(D + P)* of
Iw(D + P) is identified with the subspace of I,,(D)* formed by differential
forms w € I,(D)* vanishing at P. Let {wy,...,w; (p)} be a basis of I,(D)*.
We can then take U to be the complement of

Supp(D)USU{P [ wi(P) =0 for i=1,...,in(D)}.

LEMMA 3.3. Let Dy be a divisor of X prime to S of degree 0. Then the
set

Vb, = {D € (X = )™ | Iny(D + Dp) = 1 and (D + Dy — m) = 0}
is non-empty and open in (X — S)(™.
Proof. Consider the Cartesian square

X x (X =)™ —L— X

m

/| l

X —=8"  ——— spec(k) .

Applying Theorem 1.1 (b) to ¢ and the invertible sheaf £ on Xy, x (X — §)™

corresponding to the divisor D + p*(Dy), where D is the universal relative
effective Cartier divisor, we conclude that the set
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Vi={te X-8" |dimH" Xy, L) < 1}
is open, that is,
Vi={Dec X8| I(D+ Dy <1}
is open. By the Riemann-Roch theorem we have, for any D € (X — S)(™,
[n(D + Do) > deg(D+ Do) +1—7m=1.
So we must have
Vi={De X5 |la(D+Dy)=1}.

If [w(Do) # 0, then there exists a rational function f on X such that
(f)+ Dy 1s an effective divisor on X prime to S. This effective divisor must
be 0 since it i1s of degree 0. Hence [(Dg) = L ((f) + Do) = [,(0) = 1. So
in any case we have [,(Dg) < 1. By the Riemann-Roch theorem, we have
im(Do) < 7. Applying Lemma 3.2 repeatedly, we can find Py,...,P; (p,) in
X — 8 so that in(Do + Py + -+ P p,)) = 0. Choose P;_ py+1,--.,Pr in
X — § arbitrarily. We have

im(Do+Pi 4+ Pi D) 2 im(Do+ P14+ Pi 0g) +Pipyopy+1 -+ Pr) -

(This can be seen by interpreting i,(D) as the dimension of the vector
space of differential forms w regular at O satisfying (w) > D.) So we
have i (Dg + P; + -+ P;) = 0. By the Riemann-Roch theorem, we have
lw(Do+Py+---+Pr)=1. Hence P;+---+ P, is in the set V; and V; is
not empty.

Similarly by Theorem 1.1 (b) applied to the projection ¢: X x (X — S)™ —
(X — S)™ and the invertible sheaf on X x (X — S)™ corresponding to the
divisor D + p*(Dy — m), where p: X x (X —S8)™ — X is another projection,
we see that the set

Vo={Dec X -5 | D+ Dy—m)=0}

is open. Since deg(Dp—m) < 0, we have {((Dy—m) = 0. By the Riemann-Roch
theorem, we have i(Dy—m) = 7. Applying Lemma 3.2 repeatedly (but taking
m = 0), we can find Py,...,P; € X—S§ such that i(Dy—m~+P;+---+P,) =0.
Then by the Riemann-Roch theorem we have [(Dg—m+ Py +---+P;) =0.
So Pi+ -+ P, 1sin V, and V, is not empty.

Since (X—S)"™ is irreducible, the set Vp, = ViNV, is open and non-empty.
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LEMMA 3.4. Fix a point Py in §S.
(a) The set

U={(D1,Dy) € (X =™ x (X8
] [n(Dy + Dy — mPy) =1, l(D]‘*‘DQ“‘ﬂ’PO—m):O}
's a non-empty open subset of (X — Y™ x (X — 8§,
(b) The set
V={(D,D) € (X - xX—5H"
| [w(Dy — Dy +7Py) =1, Dy — Dy + 7Py —m) = 0}

is a non-empty open subset of (X — $)™ x (X — 8™,

Proof. (a) Let p1,p2: (X—5)™ x(X—S)™ — (X—5)™ be the projections
and let E; (i = 1,2) be the pull-backs by id x p; of the universal relative
effective Cartier divisor D on X, X (X — S)™ . Put E = Ey + E,. This is a
divisor on Xy x (X — )™ x (X — S)™.

Consider the Cartesian square

X X X =P x (X =™ L0 X,

'] l

X -9 xX-85m —— speck).

By the Riemann-Roch theorem, for any (Dy,D,) € (X — )™ x (X —S)™, we
have
[n(Dy + Dy — wPy) > deg(Dy + Dy —7wPy) +1 -7 =1,

that is, for any ¢ € (X —8)™ x (X —S5)™, we have [, (E,—7Py) > 1. Applying
Theorem 1.1 (b) to the projection g and the invertible sheaf corresponding to
the divisor E — p*(Py), we see that the set

Uy={te X=9" x X =85 | l4(E — nP) = 1}
1s open. Similarly the set
Up={te X =" x X~ | (E — 7Py —m) = 0}

1s also open. Hence the set U = U; N U, is open.

Applying Lemma 3.3 to Dy = 0, we see that there exists a D € (X S)™
such that [,(D) =1 and I(D —m) = 0. Then (D,nwPy) is in U. So U is
non-empty. This proves (a).

The proof of (b) is similar and is omitted.
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DEFINITION 3.5. A birational group over k is a nonsingular variety V
together with a rational map m: V x V — V, (a,b) — ab such that

(a) (ab)c = a(bc) when both sides are defined;

(b) the rational maps ®: (a,b) — (a,ab) and Y¥: (a,b) — (b,ab) on V xV
are birational.

PROPOSITION 3.6. There exists a unique rational map
m: (X =9 x (X -H" = X - 85H™

whose domain of definition contains the set U in 3.4(a) such that m(D;,D;)
is the unique effective divisor that is m-equivalent to Dy + D, — 7Py for any
(Dy,D») € U. Moreover m makes (X — S)™ a birational group.

Proof. Keep the notations in the proof of Lemma 3.4. Consider the
Cartesian squares

Xo =q¢ ') — Xn XU C Xp x (X =9 x X -5™ 25 X,

| a | |
spec(k(t)) —— U C X —9HM x (X -9H™  —— spec(k).

Let £ be the restriction to X, x U of the invertible sheaf corresponding to
the divisor Ey + E, — p*(wPy). By Theorem 1.1 (c) and the choice of U, the
sheaf ¢.L is invertible. The canonical homomorphism g*¢.L — L gives rise
to s: Ox. xuv — L ®(g*q.L)~". We claim that the pair (£ ® (g*q.L)"", )
defines a relative effective Cartier divisor on (X x U)/U. According to
Remark 2.1, it is enough to check that s is injective and coker(s) is Oy -flat.
Since £ ® (¢*q.L)~" is invertible, it is enough to verify s; is injective for
all t € U by [EGA] §0.10.2.4, where s, 1s the homomorphism obtained by
restricting s to the fiber of ¢ at . It suffices to show that the restriction of the
canonical homomorphism ¢g*¢.L — L to the fiber of ¢ at ¢ is injective. By
Theorem 1.1 (c) we have ¢.L®p, k() = H(X., £,). So the restriction of the
canonical homomorphism to the fiber is HXom, L)) Q% Ox., — L;. Denote this
map by s, ; we need to show it is injective. But we have dimH° (X, £,) = 1
since t € U. If we fix a nonzero element g € H(X,, £,), then s; is identified
with Ox, — L;, a+— ag. This last map is injective since X, is an integral
scheme and ¢ can be thought of as a rational function. So s, 1s injective.
Hence (£ ® (¢*g+L)~',s) defines a relative effective Cartier divisor. The
restriction of this divisor to the fiber of g at ¢ is the divisor on X,, defined
by the pair (L;, g), which is supported on Xn, — Q. So the divisor defined by
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(L ® (g*q.L)"",s) is supported on (Xy — Q) x U. By Proposition 3.1 there
exists a unique morphism of varieties m: U — (X — $)™ such that the divisor
defined by (£ ® (¢*g«L)~",s) is the pull-back by id x m of the universal
relative effective Cartier divisor D on Xm X (X —S)™. For any (Dy,D») € U,
we have I,(Dy + D, —mPy) =1 and I(D; + D, — Py —m) = 0. So there 18
one and only one effective divisor m-equivalent to D; + D, — Py and it 1s
simply m(Dy,D»).

Similarly, using Lemma 3.4 (b) and Proposition 3.1, one can show that
there exists a morphism r: V — (X — S)™ such that r(Dy,D,) is the unique
effective divisor m-equivalent to Dy — Dy + 7Py for any (D;,D,) € V.

Let us verify that m defines a birational group on (X — $)™ . First we
show

m(m(Dy, D), D3) = m(Dy, (D2, D3))

when (Dy,D»), (D,,D3), (m(Dy,D;),D3) and (D;,m(D,,Ds3)) all belong
to U. Indeed m(m(D;,D»,),D3) is the unique effective divisor m-equivalent
to m(D;,D,) + D3 — wPy, and m(D;,m(D,,Ds)) is the unique effective
divisor m-equivalent to D; + m(D;,,D3) — wPy. But m(D1,D;) + D3 — mPy
and D, + m(D,,D3) — wPy are m-equivalent since both are m-equivalent to
D, + D, + D5 —2nPy. So we have m(m(D,, D,), D3) = m(Dy,m(D,, D3)).

One can also verifty m(Dy,D,) = m(D,,D,) when both (D;,D;) and
(Dy,Dy) are in U, that is, the operation m is commutative.

Next we show that ©: (D, D,) — (D, (D, D,)) is the birational inverse
of @: (Dy,D;) — (Dy,m(Dy,D;)) so that @ is birational. Since the operation
m 1s commutative, the rational map Y¥: (D, D;) — (D,,m(Dy,D,)) is also
birational. Therefore m makes (X — )™ a birational group.

First we verify ®©(D,D,) = (D;,D;) whenever the left-hand side is
defined. We have

DOy, D) = ©(D1, 1(Dy, D7) = (Dy,m(Dy, 1(Dy, Dy))) .

Moreover m(Dy,r(D1,D;)) is the unique effective divisor m-equivalent to
Dy + r(Dy,Dy) — mPy. But D, is also an effective divisor m-equivalent to
D\ + r(D,D;) — wPy since we have

Dy + r(Dy,D;) — mPy ~q Dy 4+ (Dy — Dy + 7Py) — wPy = D, .

Hence IH(Dl,I’(D],Dg)) = D2 and @@(Dl,DQ) = (Dl,Dz).

Similarly one can show that @ ®(Dy,D,) = (D;,D,) when the left-hand
side 1s defined.
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Note that @ is a regular morphism defined on U and © is a regular
morphism defined on V. Since

®OD,Dy) = (Dy,D;) and O D(Dy,Dy) = (Dy,Ds)

whenever the left-hand sides are defined, the maps @ and © induce regular
morphisms ®@: UN®~ (V) — VNO~(U) and ©: VNO~(U) — UN®~ (V).
To show that @ and ©® are birational inverses to each other, it is enough to
check that UN®~ (V) and VN O~I(U) are non-empty.

Note that (Dy,D,) € UN®~(V) if and only if (D;,D,) € U and
[n(m(Dy,Dy) — D1 +7mPy) =1, I(m(Dy,D;) — Dy + 7Py —m)=0.
Since m(Dy, D,) ~w D1 + Dy — mPg, the above equations are equivalent to
(D) =1, 1Dy —m)=0.
Applying Lemma 3.3 to the divisor Dy = 0, we conclude that the set
Vo={DeX - |1,(D)=0, KD—m)=0}

is open and non-empty. Since (X — S)™ x (X — $)™ is irreducible, the set
UN((X—=S)™ x Vy) is also open and non-empty. This set is exactly UN®~ (V).
So UN®~Y(V) is non-empty.

Similarly VN ©~1(U) is also non-empty. This completes the proof of the
proposition.

4. FROM BIRATIONAL GROUPS TO ALGEBRAIC GROUPS

Let k& be an algebraically closed field, let V be a connected nonsingular
variety over k, and let m: V. xV — V, (a,b) — ab be a rational map
satisfying (ab)c = a(bc). Assume the rational maps P(a,b) = (a,ab) and
Y(a,b) = (b,ab) are birational. Then there exist open subsets X, Yo, Xy
and Yy in V x V such that @ induces an isomorphism X¢ =2 Yp and ¥
induces an isomorphism Xy = Yy. Put Z = X N Yo N Xy N Yy.

It is convenient to write the formulae for ®~! and ¥~! as ® (g, b) =
(a,a”'b) and ¥~ 1(a,b) = (ba™!,a).
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LEMMA 4.1. Replacing V by an open subset, we may assume the two
projections p;: Z — 'V (i =1,2) are surjective.

Proof. Note that the two projections p;: VXV — V, (i =1,2) are flat
since V — spec(k) is flat. So the p; are open by [EGA] IV, §2.4.6. Hence
the p;(Z) are open. Let V' = pi(Z) N pr(Z). We claim V' has the property
stated in the lemma. Let C =V — V' and let A = (C x V) U (V x C). The
subset Xo' of V' x V' corresponding to Xg is the complement in Xg¢ of
S=XoNAUD (Yo NA). We claim that if the fiber of p;: X — V at
v € V is contained in S, then v € C. Thus p;: Xo' — V'’ is surjective.

Let us prove the claim. Assume (v X V)N Xe C S, but v ¢ C. We have

(wxV)NXep C S CAUDTIHA) C (CxV)U(Vx CO)UD~HCx VIUD (VX ().
Since V 1is urreducible, we must have
WxV)NXe CCxV, VxC, O N CxV), or® 1V xC).
Since v ¢ C, we have
WxWVMNXeZ CxV, dHCxV).

So
(VX V)NXe CVXCor NV xCO).

Assume (v X V)N Xgp C V x C. Note that since v ¢ C, we have v € V'.
Hence (v X V)N Xg is not empty. So we have

dim V = dim((v x V) N Xge) = dim(((v x V) N Xe) N (V x C))
< dim(v x C) < dimV,

that is, dim V < dim V. This is impossible.

Assume (v X V)N Xgp C ® YV x C). Then DO((v xV)NXp) CVxC.
Since @ is birational, we have

dimV = dim @((v x V) N Xg) = dim(®((v x V) N Xgp) N (V x )
< dim(v x C) < dimV ,

which is again impossible. So we must have v € C.
Next we show that if the fiber of py: Xp — V at v € V is contained in S
then v € C, and hence p,: Xo' — V/ is surjective.

Assume (V x v) N Xp C S but v ¢ C. As before we have

?

(VXu)NXe CCxV, VxC, dNCxV)or d (Vx().
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Since v ¢ C, we have (V xv)NXep ¢ V x C. By counting dimensions,
one can show (V xv)NXe ¢ C x V. Since ®~1(C x V) C C x V, we have
(Vxv)NXe ¢ ®H(Cx V). So we can only have (Vxv)NXep C ®~H(VxO).
Then we have a rational map

VS (Vxo)NXe B VxCBC

where ¢)(x) = (x,v). This map p,®t,: V — C is nothing but x — xv and it
is birational. (Its birational inverse is p;W ™ !1,, where 15(x) = (v,x).) So V
is birational to C. This is impossible since dimV # dim C. So we must have
v € C. This finishes the proof of the surjectivity of p,: Xo' — V.

Similarly p;: X§,Ye', Xg, Yy — V' are surjective. Since the fibers of
pi: VxV — V are irreducible, the projection p;: Z’ = X NY{NXyNYy — V'
1s also surjective.

Having replaced V as in Lemma 4.1, we may assume V satisfies the
following properties :

PROPERTY 4.2. There exists an open set Z C V x V such that ®,®~ 1P,
and W~ are defined on Z, the restrictions ®|; and |z are open immersions,
and the projections p;: Z — V are surjective. Hence for every v € V, the
maps ©, ®~', ¥ and WY~ are defined at (v,x) and at (x,v), provided x
is generic, i.e. lies in an open set.

LEMMA 4.3. Assume 4.2 holds. Denote the closure of the graph of m in
V xVxV by I'. Then the projections p;: I' — VxV (1 <i<j<3) are
open 1mmersions.

Proof. By [EGA] III, §4.4.9, it suffices to show that the maps p; are
set-theoretically injective. Let x be a point of V. The two rational maps
I' — V defined by

(a,b,c) — (xa)b and (a,b,c)+— xc

are equal by the associative law. Let (a,b,c), (a,b,c’) € T'. Choose x
so that (xa)b is defined and (x,c), (x,c¢’) € Z. Then xc = (xa)b = xc’.
Hence ®(x,c) = ®(x,c¢’). Since @ is an open immersion on Z, we have
(x,c) = (x,c’). Hence ¢ = ¢’. This shows that pj;: I’ = V x V is injective.
Similarly one can show the other projections are injective.

We will now expand V to the group we want by glueing translates of V.
Let s be a point of V and let V; be a copy of V thought of as the



ON THE CONSTRUCTION OF GENERALIZED JACOBIANS 29

translate Vy = {vs | v € V}. The subset Wy = (V x s x V) NI is closed in
VxsxVZVxV, and the two projections Wy — V are open immersions
because they are the base extensions of the open immersions p;: I' — V XV
by the base changes Vxs — VxV and sxV — VxV, respectively. Therefore
W, defines glueing data and yields a separated scheme V' =V Uy, V.

LEMMA 4.4. V is an open dense subset of V' and V' satisfies 4.2.

Proof. Since xs is defined for generic x € V, the set VNV is not empty.
So V' is irreducible and V is dense in V/. We have

VixVi=(Vx VYUV XxV)UVsx VYUV, x V).

For every point v € V, denote by v, the point v considered as a point in V.
Note that if (v,s) € Z, then vs € V and v, € V; are glued together in V’.
Define R;: V — Vi by v+ v,. Let

Wi ={(a.b)eVxV|(ab), (s,a) and (b,sa”') are all in Z}.

This is a non-empty open subset of Z. Take Z; = (id x R)(W;) C V x V..
We define @, ¥, ®~! and ¥~! on Z, by
D(a, by) = (a,(ab);) € V x Vi,
Y(a, bs) = (by, (ab);) € V, x Vi,
D~ '(a,by) = (a,(a" b)) € V X Vj,
Y~ a,by) = (b(sa™"),a) e V x V
for any (a,b,) € Z;. Let
Wy ={(a,b)e VxV
| (a,b), (s,b), (a,sb), (s,a”'b) and (bs™"',a) are all in Z}.
This is a non-empty open subset of Z. Take Z, = (Ry x id)(W,) C V, x V.
We define @, ¥, @', and ¥~! on Z, by
D(as, b) = (ay,a(sb)) € Vy x V,
Y(as,b) = (b,a(sh)) € V x V,
O~ (ay,b) = (a5,s (@™ 'B) €V, x V,
¥~ as,b) = ((bs™a~" a,) € V x V,
for any (as,b) € Z,.

Let Z/ = ZUZ UZ,. It is an open subset of V' x V', and @, ¥,
®~', W~ are defined on it. One can show that @[z and W|; are open
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immersions. Given v € V', we need to show there exists x € V/ such that
(x,v) and (v,x) are in Z’. This is true if v € V by the property of Z. If
v €V, then v = a; for some a € V. We leave it to the reader to show that
(x,a5) € Z, and (as,x) € Z, for generic x in V. This completes the proof of
the lemma.

The above lemma allows us to replace V by V’, hence to expand V
whenever there exists a point s in V such that vs is not defined for all
v € V, and we can expand V' if there exists a point s* € V' such that v's’ is
not defined for all v’ € V’. Denote the result of finitely many such expansions
also by V/, and let U C V x V x V' be the closure of I". By Lemma 4.3
applied to V’, the projection pjp: U — V x V is an open immersion. Its
image is the set of points (a,b) such that m: V x V — V'’ is defined at
(a,b). If V x s ¢ p;p(U) for some point s in V, then replacing V' by
V' UV, increases both V' and pio(U). Using noetherian induction on open
subschemes of V x V, we may assume that after finitely many expansions,
V x's C p1p(U) for all points s € V. Then we have pj,(U)=V x V.

PROPOSITION 4.5. Let V, V', and U be as above. If pi1o(U) =V x V,
then the operation m: V' x V' — V' is everywhere defined on V' and makes
V' an algebraic group.

Proof. Take (a’,b") in V' x V'. Choose a point x so that a’x and x~'d’
are both defined and lie in V. Then we can define m(a’,b") = (a’x)(x~'b").
Similarly one can define @’~'4’ and b'a’~!. In this way we extend m, @,
¥, & ! and ¥~! to V' x V. The verification of the group axioms is routine
and is omitted.

5. FUNDAMENTAL PROPERTIES OF GENERALIZED JACOBIANS

Keep the notations in §3. We have proved that there is a birational group
structure on (X —S)"™ . The algebraic group associated to this birational group
is called the generalized jacobian of X, and 1s denoted by J,. It is a
commutative algebraic group.

Let Dy be a divisor on X prime to § of degree 0. By Lemma 3.3, the
set

Vo, ={D € (X =)™ | In(D +Dy) =1, D+ Dy —m) = 0}

is a non-empty open subset of (X — S)™. We have the following
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LEMMA 5.1. There exists a unique morphism of varieties
ap,: Vp, — (X — 8™

such that ap,(D) is the unique effective divisor m-equivalent to D + Dy for
any D € Vp,. Moreover «p, is birational.

Proof. Consider the Cartesian squares

X X Vp, C X X (X — S)(W') £ X

/| l l

Vb C (X — 5™ —— spec(k) .

0

Let £ be the restriction to Xy, X Vp, of the invertible sheaf on Xy, x (X —$)™
that corresponds to the divisor D + p*(Dg), where D is the univer-
sal relative effective Cartier divisor. By Theorem 1.1(c) the sheaf ¢.L
is invertible. The canonical map ¢*¢.L — L induces a homorphism
st Oxpxvp, — £ ® (¢*g+L)~'. Using Remark 2.1, one can show that
the pair (£ ® (¢*q.L)~',s) induces a relative effective Cartier divisor on
(Xm X Vp,)/Vp, . Applying Proposition 3.1 to this divisor, one gets the existence
of ap,. For any D € Vp,, we have [ (D+ Dpy) =1 and I(D+ Dy —m) =0.
So there is one and only one effective divisor m-equivalent to D + Dg, and
this effective divisor is simply ap,(D).
We claim that a_p, is the birational inverse of ap,. We have

ap (V_p,) = {D| D € Vp,, ap,(D) € V_p,}
={D | D € Vp,, ln(ap,(D) — Do) = 1, lap,(D) — Dy — m) = 0}
- VDO N {D ’ [w(D) =1, I(D—m)= O}
= Vp, N V.

By Lemma 3.3 both Vp, and V| are open and non-empty. Since (X —S)™ is
irreducible, the set Vp, N V; is also open and non-empty, that is, ozgol(V_Do)
is open and non-empty. One can easily show that on this open set c_ Dy © Dy
is defined and is the identity. Similarly one can show o~ IDO(VDO) is open and

non-empty, and on it ap, o a_p, is defined and is the identity. So ap, is
birational.

We have a birational map ¢: (X —S)™ — J,, by the construction of J,, .
Let dom(y) be an open subset of (X — S)™ such that ¢|dom(p) 1S an open
immersion, Moreover we may assume that for any a € dom(y), both (a,x)
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and (x,a) lie in the set U defined in Lemma 3.4 (a) if x is generic, i.e., lies
in some open set. In particular, m(a,x) and m(x,a) are defined for generic x.
Let

Up, = Vp, Ndom(e) N ap ! (dom(y)).

Note that Up, is open and non-empty since (X —S)™ is irreducible and ap,
1s birational. Moreover p(D) and ¢(ap,(D)) are defined for any D € Up,.
Define

00(Do) = @(ap, (D)) — (D).

LEMMA 5.2. 64(Dg) does not depend on the choice of D.

Proof. Let D; and D, be two elements in Up,. We need to show that

©(apy(D1)) — @(D1) = p(ap,(D2)) — ¢(D2).
Choose D3 € Up, so that (ap,(D1),Ds3), (D1, ap,(D3)), (ap,(D2),D3) and
(D2, ap,(D3)) all lie in the set U defined in Lemma 3.4 (a). Such a D3 exists.
Indeed, if (ap,(D1),x), (D1,x), (ap,(Dz),x) and (Dy,x) all lie in U for
x lying in an open set O, then we may choose D3 to be any element in
Up, NON agol(O). Note that Up, N O N 04501(0) iS not empty since ap, 1S
birational and (X — S)"™ is irreducible.
We have

o(ap,(D1)) + ©(D3) = p(m(ap,(D1), D3)) ,
©(D1) + p(apy(D3)) = @(m(Dy, ap,(D3)) .
Since
m(ap,y(D1), D3) ~m ap,(D1) + D3 — Py ~wn Dy + Do + D3 — wPy,
m(D1, ap,(D3)) ~m Dy + ap,(D3) — wPy ~m Dy + D3 + Dy — P,

we have
m(ap,(Dy), D3) = m(Dy, ap,(D3)) .
Hence
©w(apy(D1)) + ©(D3) = p(Dy) + p(ap,(D3)),
that 1s,

w(ap,(D1)) — ¢(D1) = @lap,(D3)) — ¢(D3) .
Similarly we have

p(ap,(D2)) — w(D2) = p(ap,(D3)) — p(D3).
Therefore

w(ap,(D1)) — (D)) = @(ap,(D2)) — ¢(D7) .
This proves the lemma.
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Thus we have a well-defined map 6 : Div® — J,, from the set of divisors
of degree 0 on X prime to § to Jy,.

LEMMA 5.3. 6y is a homomorphism.

Proof. Let Do, Ey € Div® and let Fy = Dy + E;. Choose D € Up,,
E € Ug, and F € Ug, so that

(apy(D), agy(E)), (D, E), (m(cap,(D), ag,(E)),F) and (m(D,E), ag,(F))
all lie in the set U defined in Lemma 3.4 (a). We have

ap,(D) + op(E)+ F ~oy D+ Do+ E+Ey+F=D+E+F+ Do+ E,,
D+ E+oap(F)~m D+E+F+Fy=D+E+F+Dy+Ep.

So
m(m(ep, (D), oz, (E)), F) = m(m(D, E), g, (F))
Hence
p(m(m(op, (D), oz, (E)), F)) = o(m(m(D, E), ar, (F))
Therefore

wlap, (D)) + p(ag,(E)) + o(F) = o(D) + @(E) + p(ar,(F)),
or equivalently,
(plapy (D)) — (D)) + (p(ag,(E)) — 9(E)) = @(ap,(F)) — o(F).
This last equality is exactly
00(Do) + Bo(Eq) = 0p(Dy + Ey) .

So 6y is a homomorphism.

We define 0: Div — Jy, from the group of divisors on X prime to S to
Jm by

(D) = 0o(D — deg(D)Py) .

Obviously 6 is a homomorphism.
%"‘:i‘:
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PROPOSITION 5.4. The homomorphism 6 is surjective and ker(0) consists
of divisors m-equivalent to integral multiples of Py.

Proof. Assume y ., P; is in dom(p). We have
0(D_Pi) = 60(D_ Pi—mPo) = plan,(D)) — (D),
i=1 i=1

where Dy = . P; — wPy and D € Up,. We may choose D so that
m(3__, P;,D) is defined and is the unique effective divisor m-equivalent
to Z?:IPi + D — 7Py. Since ap,(D) is the unique effective divisor m-
equivalent to D+Dg = D+ |, P;—7Py, we have m(}__, Pi, D) = ap,(D).
Hence o(m(3_, Pi, D)) = @(apy(D)). So (3 L Pi) + (D) = plap,(D)).
Therefore @(ap,(D)) — (D) = (5, P;), that is,

e(ipi) :(p(i:Pi).

This is true whenever » . | P; is in dom(yp).

Since ©|dom(yp) 1S an open immersion, p(dom(y)) is an open subset of Jy, .
The image of ¢ contains this open subset. But J,, is generated by any open
subset. So we must have Im(f) = J,, and 6 is surjective.

Assume E € ker(f). Then 0y(E —deg(E)Py) = 0. Put Ey = E — deg(E)Py.
Then for any F € Ug,, we have

lag,(F)) — @(F) = Oo(E — deg(E)Py) = 0.

Hence ¢(ag,(F)) = ¢(F). But ¢ is an open immersion on dom(y). So we
have ag,(F) = F. Since ag)(F) ~n F + Ep, we have F ~y F + Ey. Hence
Ey ~m O, that is, E ~y, deg(E)Py. So E 1s m-equivalent to an integral
multiple of Py.

Conversely assume E is m-equivalent to an integral multiple of Py and
let us prove that 8(E) = 0. Again let Ey = E — deg(E)Py. Then Ey ~y 0.
Choose F € Ug, N Uy, where Up is the set Up, defined before by taking
Do = 0. We have

0(E) = Oo(Eo) = p(ag,(F) — @(F),
0(0) = w(ao(F)) — w(F).

Note that F 4+ Ey ~n F since Ep ~n 0. But ag,(F) is the unique effective ;_
divisor m-equivalent to F+ Ey, and op(F) 1s the unique effective divisor m-

equivalent to F'. So we must have ag,(F) = ap(F). Therefore 0(E) = 6(0) = 0.
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Regarding a point P in X — S as a divisor, we can calculate A(P). In this
way we get amap 0: X — 8§ — Jy.

PROPOSITION 5.5. The map 0: X — S — Ju is a morphism of algebraic
varieties.

Proof. let P X — S and let Dy =P — Py. Fix a D € Up,. Consider
the set W, = {R € X —S | [n(D+ R — Py) = 1}. By the Riemann-Roch
theorem, for any R in X — S, we have [,(D + R — Py) > 1. Applying
Theorem 1.1 (b) to the projection g: Xy X (X —S) — X — S and the invertible
sheaf corresponding to the divisor D + p*(D — Py), where D is the universal
relative effective Cartier divisor on X, X (X —8) and p: Xy X (X —=5) — X
is another projection, we see that W; is open in X — §. Similarly one can
show W) ={Re€ X —S|I(D+R—Py—m) =0} is also open in X —S. So

W=WNW,={ReEX—S|ln(D+R—Py)=1, KD+R—-Py—m)=0}

is open in X — §. It is non-empty since P € W by our choice of D. By
Proposition 3.1 we have a morphism ~v: W — (X —S)™ of algebraic varieties
such that for every R € W, ~v(R) is the unique effective divisor that 1s m-
equivalent to D+ R — Py. Since ag_p,(D) 1s the unique effective divisor that
i1s m-equivalent to D + R — Py, we have y(R) = ag_p,(D). Replacing W by
an open subset containing P, we may assume Im(vy) C dom(yp). Note that for
any R € W, we have D € Ug_p,, and

O(R) = Oo(R — Po) = @((or—py(D)) — p(D) = ©(v(R)) — (D),

that 1s, 8(R) = @(v(R)) — (D). So 0 = p o~y — (D) on W. This proves 6
is a morphism of algebraic varieties in an open subset containing P. Since
P c X — S is arbitrary, 6 is a morphism of algebraic varieties.

The morphism 6: X — S — J,, induces a morphism of algebraic varieties
0: (X —HM — J,.

PROPOSITION 5.6. 0: (X — )™ — J., coincides with the birational map
©: (X — 8™ — J. In particular ¢ is everywhere defined.

Proof. Let Y ", P; € dom(yp). By the proof of Proposition 5.4, we have
(o P)=0C"", P). So ¢ =0 as rational maps.

Thus there is no difference between ¢ and 6. From now on we denote

the map ¢ also by 6. We summarize what we have so far in the following
theorem.
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THEOREM 1. There is a morphism of algebraic varieties 0: X — S — Jy
satisfying the following properties :

(a) The extension of 0 to the group of divisors on X prime to S induces,
by passing to quotient, an isomorphism between the group C° of classes of
divisors of degree zero with respect to m-equivalence and the group Ju, .

(b) The extension of 0 to (X — S)™ induces a birational map from X™
t0 Ju .

The following theorem characterizes J,, by a universal property :

THEOREM 2. Let f: X — G be a rational map from X to a commutative
algebraic group G and assume m is a modulus for f. Then there is a unique
homomorphism F: J, — G of algebraic groups such that f = F o0 + f(Py).

Proof. Replacing f by f — f(Py), we may assume f(Py) = 0. Since
m is a modulus for f, the extension of f to the group of divisors of X
prime to S induces a homomorphism CY — G by passing to quotient. By
Theorem 1(a) we have J,, = C% as groups. So we have a homomorphism
of groups F:J, — G such that f = F@. It remains to prove F is a
morphism of algebraic varieties. By Theorem 1 (b) we have a birational map
0: (X — S — J,. Denote the extension of f to (X — S)™ by f’. Then
FO = f’. Since 6 is birational, it induces an isomorphism between an open
subvariety of (X — $)™ and an open subvariety of J,,. Moreover f’ is a
morphism of algebraic varieties. Hence F' i1s a morphism of algebraic varieties
when restricted to some open subset of J.,. The whole J,, can be obtained
from this open subset by translation. So F' is a morphism of algebraic varieties.

6. GENERALIZED JACOBIANS AND PICARD SCHEMES

In this section we prove Jy, is the Picard scheme of X, .
Let T be a k-scheme. Consider the Cartesian square

Xo xT —— X

'] l

T —— spec(k) .

We have ¢.Ox. xr = Or by [EGA] 111, §1.4.15, the fact H'(Xy, Ox,,) =k, -
and the fact that T — spec(k) is flat. The morphism ¢ has a section
s: T — X XT, t— (Po,t).
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LEMMA 6.1. Let Ly and Ly be two invertible sheaves on X XT. Assume
Ly = L,y. Then the canonical map Hom(Ly, L) — Hom(s* L1, s* L) induced
by s is bijective.

Proof. Since L; = L,, it is enough to show that the canonical map
Hom(L,, L£1) — Hom(s*L,s*Ly) is bijective. We have a commutative diagram

OmeT X X ry —— OT(T)

l |

Hom(L, L) ——— Hom(s*Ly,s*Ly),

where the horizontal arrows are induced by s. We have

Hom(L1, £;) = Hom(Ox, x7, L1 @ L1
= Hom(Ox,, x1; Ox, x1) = Ox, x7(Xm X T).

Hence the left vertical arrow in the above diagram is bijective. Similarly
the right vertical arrow is also bijective. Since ¢.Ox_xr = Or, we have
Ox, x7(Xm X T) =2 O(T), and the upper horizontal arrow is bijective. Hence
Hom(L,, £1) =2 Hom(s*L;,s*L;) by the commutativity of the above diagram.

LEMMA 6.2. Let {U;} be an open covering of T and let L; be invertible
sheaves on Xuw X U;. Assume s*L; = Oy, and L; |x,, xwnuy= Lj [xm xwinv)-
Then there exists an invertible sheaf L on Xuw X T such that L |x, xu,=2 L;
and s*L = Or. Moreover L is unique up to isomorphism.

Proof. Fix an isomorphism «;: s*L; — Oy, for each i. Let
.k *
i " Liluny, — " Liluny,

be the isomorphism (oy|y,nu,) ™" © (a
map

vinu;). By Lemma 6.1 the canonical

Hom(Zi[x,, xwinuy: £jlxy xwinuy) — Hom(s* Li|v,n;, s Lilvinu,)
s bijective. So a;; can be lifted uniquely to an isomorphism

A,'ji E,‘

X x(UiNUN— L %0 x w00y -

By the uniqueness of the lifting and the fact that i = e on U;NUN Uy,
we have AyA; = Ay on Xy X (U; N UiNU). So A;; defines glueing data
and we can glue the £; together to get an invertible sheaf £ on X, x 7. By
the construction of £ we have s*£ = Or. This proves the existence of L.
Similarly using Lemma 6.1 one can prove £ is unique up to isomorphism.
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LEMMA 6.3. Assume T is integral. Let L, and L, be two invertible
sheaves on Xn x T satisfying Ly, = Ly, for all t € T. Then there is an
invertible sheaf M on T such that L = L, ® g* M.

Proof. Let L = L; ® L ' Then L, = Oy, . It suffices to show that
L = g*M for some invertible sheaf M on T. We have H°(Xy,, L, =
HO(Xm,(DXm) = k. By Theorem 1.1(c), the sheaf ¢,L 1is invertible and
g« L @ k(t) = H' X, L;). So the restriction (¢*g.L); — L, of the canonical
map g*q.L — L to the fiberof g at r € T is HO(Xm,[Z,)@)(’)Xm — L,, which
i1s an isomorphism since L; = Oyx_. By Nakayama’s Lemma, the canonical
map g*g.L — L is surjective. But since it is a homomorphism of invertible

sheaves, it must be bijective. Hence L = g*¢.L.

Now we use the above lemmas to construct a canonical invertible sheaf
on Xm X Ju .

On X, x (X—S5)™ we have the invertible sheaf corresponding to the divisor
D — p*(wPy), where D 1s the universal relative effective Cartier divisor and
P X X (X — ™ — X, is the projection. Since 0: (X — S)™ — J, is
birational, there exist open subsets U in (X — S$)™ and V in J,, such that
6 induces an isomorphism U = V. Hence we can push-forward the above
invertible sheaf on X, x (X —S)™ to get an invertible sheaf £y on Xy x V.
For each r € J,,, denote by L(#) the invertible sheaf on X, corresponding
to the divisor class in C? that is mapped to t € J, under the canonical
isomorphism C% = Jum . Obviously the restriction Ly, of Ly to the fiber of
the projection q: Xy XJy — Jiy at £ € V is isomorphic to £(#). The invertible
sheaf Ly @ (¢*s*Ly)~! has the same property, where s: Jy — Xpm X Jm 1S
the section ¢ — (Po, ). Thus replacing Ly by Ly ® (¢*s*Ly)~ " if necessary,
we may assume that s*Ly = Oy .

For each a € Jn, let T_,: Jiuw — Jm be the translation ¢ — t—a. Consider
the invertible sheaf L,y = (d X T_,)*Ly ® p*L(a) on X, @ (a+ V), where
p: Xm X Jm — X 1s the projection. The restriction L,4y 44 of Loy to the
fiber of g at a+t€a+V i1s

((d X T_)* Ly @ p*L(@))a+s = Ly ® L(a) = L) @ L(a) = L(a+ 1),

that is, L,qvayt = L(a+1). Hence for any 1 € VN (a+ V), we have
Ly:= Lyrv,. By Lemma 6.3, we have

Ly xm x(v@+v) = Lagv|xn x(vn@+vy ® ¢-M

for some invertible sheaf M on VN (a+ V). But since s*Ly = Oy, we also
have s*L,iyv = Ouiy. Hence M =2 Oynqvy. Therefore Lylx,, xvnua+vy =
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Lavv|x, x(va@+vy - By Lemma 6.2, we can glue L,y (a € J,) together to
get an invertible sheaf £; on Xy X Jy. It has the property that its restriction
to the fiber of ¢ at ¢ € Jy is isomorphic to £(r) and s*L;, = Oy, .

Define

PUT) = {L£ € Pic(Xyy x T) | deg(L) = 0}/q™ Pic(T),

where deg(L) is defined as the leading coefficient of x(L£LE™) as a polynomial
in n. Since s*¢* = id, we may define

PUT) = {£ € Pic(Xy, x T) | deg(£) =0 and s*L = Or}

as well. In particular, we have L; € P°(J.,). Using the first definition
of P°(T) and Lemma 6.3, one can show that the pull-back of L; by
idx0: X X (X =8 — X, X Jy, is the invertible sheaf on Xy X (X — $)m
corresponding to the divisor D — p*(mPyp).

The following theorem says that J, is the Picard scheme of X, .

THEOREM 3. The functor T — PY(T) is represented by Jy,. More precisely,
for any invertible sheaf L on Xy X T of degree 0 satisfying s*L = Or,
there is one and only one morphism of schemes f: T — Jun such that L is
the pull-back of L;_ by id X f: Xpm X T — Xiy X Jiy.

Proof. Let Vo = {D € X -8 | [,(D) =1, KD - m) = 0}. By
Lemma 3.3, we know V; is non-empty and open in (X — S)™ . Note that
for every D € Vj, there is one and only one effective divisor in X, that is
m-equivalent to D. Hence the restriction 8]y, of 6: (X —S)™ — J,, to Vy
is injective. By [EGA] 111, §4.4.9, 6|y, is an open immersion.

Consider the Cartesian square

X X T SN Xin

| l

I —— spec(k) .

Let L' = L ® p*L(wPy), where L(mPy) is the invertible sheaf on X,
corresponding to the divisor mPy. Let us prove the theorem under the
extra assumption that for every tr € T, we have dimHO(Xm,Lj) = 1 and
dim H°(X, £! ® L£(—m)) = 0, where L£(—m) is the invertible sheaf on X
corresponding to the divisor —m. By the Riemann-Roch theorem, for every
t € T, we have dimH'(Xy,, £]) = 0. By Theorem 1.1(d) the sheaf g.L' is
invertible. The canonical map g*g.L’ — £’ induces
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s: Oxoxr — L' ® (g g L)'

Using Remark 2.1, one can show that the pair (£’ ® (¢*q.£L)~!,s) defines
a relative effective Cartier divisor on (X, x T)/T. By Proposition 3.1, there
exists a unique morphism of schemes ¢: T — (X — S)™ such that the pull-
back by id x g of the universal relative effective Cartier divisor D 1s the
divisor defined by (£’ ® (¢*q+L’)"!,s). Let f = fg. Then the pull-back of
Ly by id x f is L. This proves the existence of f. To prove f is unique,
assume f: T — Jy, is a morphism such that the pull-back of £; by id X f
is L. By our extra assumption, we must have Im(f) C 6(Vy). But 6|y, is
an open immersion. So there exists a morphism g: 7 — (X — S)™ such that
f =06g. We leave it to the reader to prove that the pull-back of the universal
relative effective Cartier divisor D by id X g is the divisor defined by the
pair (£’ ® (g*q.L)~!,s). By Proposition 3.1, such kind of g is unique. So
f 1s also unique.

Now let us prove the theorem. Let #y be a point in 7". For every point
D € (X — 5™, denote by L(D) the invertible sheaf on X or on Xp
corresponding to the divisor D. By Lemma 3.3, the set

(D e X—-5™ | dimH' Xy, L, LMD)) = 1, dim H*(X, £, ® L(D—m)) = 0}
is non-empty (and open). Fix an element D in this set. Consider the set
U, ={teT|dmH Xn, L ® L(D)) = 1, dim H(X, L; ® L(D — m)) = 0} .

This set is open by the Riemann-Roch theorem and Theorem 1.1 (b). Obviously
it contains 9. So U, is an open neighbourhood of #,. By the theorem with
the extra assumption that we have already proved, there exists a unique
morphism f/Ut(): U, — Jm such that the pull-back of L, by id X fbtﬂ 1s
(L ® p* LD — mPy))|x,, xu, - Put i :f/Uto +a, where a is the point in Jy,
corresponding to the divisor class 7Py — D in CY . Obviously the pull-back
of Ly, by the morphism id X fy, is £ ‘meUxO' Moreover, such an fy, = is
unique. So we can glue fUt0 together to get f: T — Ji .
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APPENDIX: PROOF OF PROPOSITION 3.1

We start with some lemmas.

LEMMA A.1. Let A be a commutative ring with identity on which a finite
group G acts, let AY be the invariant subring, and let B be a flat A% -algebra.
Then G acts on B ®4c A through its action on the second factor and the
invariant subring of this action is B.

Proof. We have an exact sequence
0-A4%—>A— ][4,
getG

where [] A is the direct product of |G| copies of A, and A — [] A is
geG geG

defined by a — (ga —a). Since B is a flat A®-algebra, the tensor product of
B with the above sequence remains exact, that is, the sequence
0—B—B®@iA— || BRA
geaG
is exact. Hence B = (B ®40 A)C.

Let A be a finitely generated k-algebra on which a finite group G acts.
Then A is finite over AY. For every prime ideal q of A, let py,...,p, be
all the prime ideals of A lying over g. It is known that G acts transitively

on {pi,...,pn}. Fixa p€{p1,...,p.}. Let Go={g€ G| gp =p} be the
decomposition group at .

LEMMA A.2. Notatmn as above. Let AG be the completion of the local
ring AGq and let A be the completion of z‘he local ring A,. Then G, acts
on A and (A, A, )G —AG

Proof. Since A%, is a flat A%-algebra, we have (A%, ®40A)° = AC, by
Lemma A.l. Replacing A by AGq ®4c A 1f necessary, we may thus assume
that AY is a local ring and g is the maximal ideal of AC.

Let A be the completion of A with respect to the gA-adic topology. Since
A 1s a finite AG—algebra we have A = AG ®asc A. On the other hand we
have A = HAp Since AC is a flat AC -algebra, we have AG — (AG ®40 A)C

by Lemma A.l. So we have AC — (TTA,)¢. Obviously (1A,)C = @A,)%.

Therefore (A,)0 = AG.
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LEMMA A.3. Let A be a noetherian local ring, let I; (i =1,...,n) be
some ideals of A, and let K; be the kernel of the canonical homomorphlsm
A —>A/I If I=1 -1, then the kernel of A ——»A/I is Ki---K,.

——

Proof. Since A is noetherian, we have ker(A — A/I) =
that 1s K; = LA. Similarly we have ker(A — A/I) — JA = I - 2
ket(A — A/D) =K, - K,.

LA,
So

Let T be a k-scheme. Consider the Cartesian square

Xy XT —— Xn

') l

T —— spec(k) .

We have the following

LEMMA A4. Let s: T — X X T be a section of q. Then s is a closed
immersion and the closed subscheme D defined by s is a relative effective
Cartier divisor on X x T/T.

Proof. Since gs=id is a closed immersion and since ¢ is separated, s
is also a closed immersion. The closed subscheme D defined by s is flat
because gs=id. Let Z be the sheaf of Oy _«r-ideals defining D. We have an
exact sequence

O——>I—>Oxm><T*—>OD—>O.

For any ¢t € T, since Op is Or flat, the following sequence is exact:
0— 1o, k() = Ox,, x1r ®o, k(t) — Op, — 0,

where D; is the fiber of D — T at t. Hence Z ®p, k(t) is the ideal defining
the closed subscheme D, of ¢~ !(¢) = X,,. Obviously D, defines a divisor of
X . So for every point x € g~'(), the ideal Z, ®o, k(1) of Ox,, x1.®0, k()
is generated by an element which is not a zero divisor. By Nakayama’s
lemma, the ideal Z, of Oy, xrr 18 generated by one element whose image
in Oy, x1x ®o,, k(t) is not a zero divisor. By Lemma 2.3, D is a relative
effective Cartier divisor.
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Consider the sections
it (X —=8)"—=Xu xX=9", (Pi,....,P)— (Pi,P1,....,Py).

Denote the relative effective Cartier divisors defined by s; also by s;, and let
D = s, +---+s,. The relative effective Cartier divisor D can also be regarded
as a closed subscheme of X, x (X —S8)". The n-th symmetric group &, acts
on (X — )" by permuting the factors. It acts on Xy, x (X — S)" through its
action on the second factor. Obviously D is stable under this action. Let D
be the quotient of D by &G,,.

PROPOSITION A.S5.
(a) The quotient of Xm X (X — 8" by &, is Xm X (X — S)W.
(b) The closed immersion D — Xy, X (X — 8)" induces a closed immersion

D — Xn X (X — W and D is a relative effective Cartier divisor on
Xm X (X = ) /(X — $). Moreover D is the pull-back of D.

Proof. (a) We have a Cartesian square

Xy XX =8)" —— X x (X — S)(n)

| l

X-85" — X-=-5",

The morphism X, x (X — ) — (X —S)" is flat since it is obtained from the
flat morphism X, — spec(k) through the base extension (X —S$)" — spec(k).
Our assertion then follows directly from Lemma A.1.

(b) Consider the commutative diagram

D _— D

l l

X XX =8)" —— X X (X = 85®

l l

X-8 — X-85",

One can easily show that D — X, x (X — 5" is a finite morphism and induces
a homeomorphism of D with a closed subset of X X (X =5 . We are going
to show that for any point y € D, the homomorphism Ox o xx—sim y — Op
is surjective and the homomorphism Ow—sym, — Op, is flat, where ¢ is
- the image of y in (X — S)(”) If this is done, then D — X, x (X — §)@
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is a closed immersion and D — (X — S)™ is flat. Obviously the fibers of
D — (X —S)™ are effective divisors. As in the proof of Lemma A.4, one
can then use Nakayama’s lemma and Lemma 2.3 to show that D is a relative -
effective Cartier divisor.
One can show that

~

%) -
OD;Y - OID:)’ ®0Xm><(X—S)(”),y OXm X(X_S)(”)7y '

Note that Oy, x_sm, is a faithfully flat Oy y_sm.,-algebra. Thus to
show that Oy yx-smy — Op, is surjective, it is enough to show that
@\me(x__g)(n),y — @p,y is surjective; and to show that O _gmw , — Op,, is
flat, it is enough to show that @(X_S)(W — @p,y is flat.

Assume t = n Py +---+mP; € (X —S)™, where the P; are distinct points
of X—S, n; >0 and > n; = n. Then y = (P;,,t) € X, x (X — 8@ for

some ip € {1,...,0}. Let ¢ =(Py,...,P1,...,P,,....,P) € (X —S)", where
the first n; components of ¢ are P;, ..., and the last n; components are P;.
The point ¢ is a point in (X — S)* lying over ¢t € (X — S)". Let y' be the
point (P;,,t') in Xy X (X —S)". It lies over y. Note that y’ is also a point
in D. With respect to the actions of &, on (X —S)*, on X;;, X (X —S5)", and
on D, the decomposition groups at ' € (X — )", at y € X, x (X —5)", and
at y € D are all &, x --- x &,,. We have

O(X—S)”,t = k[[xn, “w oW ,xlm gooo sy X1y oo ,xlm]] ,

and the decomposition group &, x---x &, acts on @(X_ sy by permuting
Xil, - - -, Xin, for each i. We have

Ox, xx—syy = kX, X115 X1ny s oo o3 X1y -+ oy Ximg 1]

and the decomposition group &,, X ---x &, acts on @Xm x(X—Sy.y by fixing
x and permuting Xx;i,...,X;, for each i. '
For each i € {n; +---+mnjy_1+1,...,n +---+n;}, the section

st X=8)"—=XpuxX-9", (P,...,P)— (P,P,...,P,)
induces a homomorphism
Oxt xx=3,y — O—sy,ur
Through the isomorphism
6Xn1X(X_S)n’y/ kL[, X115 ooy XDy e e s XLy« - - s Xy )]

and the isomorphism
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O(X—S)”,I" = k[[xlla cee s Xy e e y XIlsy -+ - ;xlm]] )
this homomorphism induced by s; is

KD, X100 e s Xlpys o e s XaLy - - o X ] — KLX11, o Xy oo s XL s X 115

X F Xigj, Xaf " Xap (a=1,...,1, =1,...,n4),

where j € {1,...,n;} is uniquely determined by nj + -+ Rig—1 T J =
The kernel of thls homomorphism is the ideal (x — xjy)- By Lemma A.3, the
kernel of the homomorphism C)me(x Sy = (’)D\ is identified with the

nj,

ideal (H(x — x,-oj)> through the isomorphism
=1

Ome(X sy RLX, X115 Xy oo XiLy - X 1]

Hence

ni,

= k[[x Xily v sXlngs-- s s XI5+ » xm,]]/ H(x — xi@j)) :
=1

and the decomposition group &, x --- x &, acts on Op, by fixing x
and permuting Xx,...,Xp for each i. Let oy,..., , 0, be the elementary
symmetric functions in x;, ..., X, . By Lemma A.2, we have

Riy
Opy Zk[[x.011, s Oty o011, oo Ol /(H(x x,oj)>

Xm X (X—=85) y = k[[x: OllyeveesO0lnyse-3005 00+ O/m]]:

Ox—syon s Zkllor1, .0y 500, ol

Now it is easy to see that Oy s x—_sw, — Op, 1is surjective and
Ox_sm, — Op, is flat. This proves D is a relative effective Cartier divisor.
We also have

Op,y = Op,y®; Ox—sy 1 -

(X—S)U0)

This implies that D = D Xx_gw (X —8)", that is, D is the pull-back of D.
This completes the proof of the proposition.

The relative effective Cartier divisor D is the universal relative effective
Cartier divisor.
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LEMMA A.6. Let T be a k-scheme and let s;: T — Xz XT (i=1,...,n)
be some sections of the projection q: Xo XT — T. Assume the images of s; lie
in (Xm —Q)XT. Then there is a unique morphism of schemes f: T — (X —S)™
such that the pull-back by id x f of the universal relative effective Cartier
divisor D to Xeo XT is 51+ -+ 5,.

Proof. Let p: Xy x T — X, be the projection. The morphisms
psi: T — Xy induce (psi,...,ps,): T — X . Since the images of s; lie
in (X, — Q) x T, we actually get a morphism (psy,...,ps,): T — (X —35)".
Composing with the canonical morphism (X — S)" — (X — S™, we get
f:T— (X—9S)" so that the pull-back of D by id x f is sy +---+s,. This
proves the existence of f.

To prove the uniqueness of f, we first note that f: T — (X — S)™ is
uniquely determined as a map on the underlying topological space. Indeed,
for every point t € T, f(¢) is necessarily the point in (X —S)®™ corresponding
to the effective divisor (s; +---+s,); on ¢~ '(f) = X,,. To prove f is unique
as a morphism of schemes, it is enough to prove that the homomorphism
on local rings Oy _gm. ) fly) Or, induced by f is uniquely determined. It
suffices to prove that O(X Sym. f(5) OT, 1s uniquely determined.

Consider the commutative diagram

D — D

l l

X X T — X X (X — 5™

J l

T L) (X — S)(n) :

where D is the closed subscheme of X, X T corresponding to the divisor
s1+ -+ s,. Let A= (57’,, let z € D be a point lying over t € T, and let
y € D be the image of z. We have (’)meTZ = Al[x]].

Without loss of generality, assume

psi(t) = - =psy, (t) = Py,
pSm-l—l(t) - :pS}’l]-{—nz(I) == P2 5
psn|+---+n1_1+1(t) == psm—{—'--—{—l’l[(t) — Pl?
where n; >0 (i=1,...,), ny+---+n; =n, and the P; are distinct points

in X —S. Then we have z = (P;,,t) € Xnn X T for some ip € {1,...,[}.
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\

For each i € {n; + - 4+ mj,— + 1..... ny + -+ n;,}. the section s;
induces a homomorphism @mer,: — (5“. ie., Allx]] — A. Denote the
image of x under this homomorphism by «;,;. where j € {I..... ni,}ois
uniquely determined by n; 4+ --- +n;,—; +j = . Then by Lemma A.3. we
have

II,“

Op.. = A[L\‘l]/(H(.r — cm,-)) :
j=1

Keep the notations in the proof of Proposition A.5. We have

O(X_S)(m.f(,) g k[[gll ..... (7],” ..... (7[] ..... U[”J ” .

We have a commutative diagram

Ox xT.z ° - O.\'mx(.\'—.S')"“.v\‘

T T

OT.[ — O(‘Y_S]un:,‘(,) .
It is isomorphic to

My

A[[\]]/ (III_I:([)I(\ — aiui)> — /\'[[.\‘. Te ... Tlnpvv- - TNenn.. O’{,,,”/ ( H (v — Ko ))
J= =

J= 1

T T
| |
| 1

A[[,\]] — /([[.\'.O']] ..... O’|,,,

T T

!
| |
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}’L,'O
In order for this last diagram to commute, it is necessary that [](x — x;)
j=1
l’l,'o
be mapped to [](x — a;,) under the homomorphism
j=1
k[[X,Ull, c 5 O0lnyy o500y - - - 7Jn1]] - A[[X]] .
So the image of o;,; under the homomorphism
k[[alla“ 5 O01ngy 5001y - - '7Uln/]] — A
is necessarily the value at (g, ... >aion,-0) of 0y, considered as a func-

tion on A" . We see that this is true for any indices iy and j if we
let z go over the points in D above t. Therefore the homomorphism
klloi1, ..., 01, NP Jln,]] — A 1s uniquely determined, that is, the
homomorphism O(x S f5y Orr 1s uniquely determined. This concludes
the proof of the lemma.

LEMMA A.7. Let T be a k-scheme and let D be a relative effective
Cartier divisor on (Xy X T)/T supported on (Xy — Q) X T with degree n.
Then there exist a flat morphism T' — T and sections s;: T' — Xy X T’
(i=1,...,n) of the projection Xy X T' — T’ such that the pull-back of D
to Xpo X T is equal to s; + -+ s,.

Proof. By the definition of relative effective Cartier divisors, D is flat
over T. On the other hand, D — T is proper and has finite fibers. So D is
finite over 7 by [EGA] III, §4.4.2. Take 77 = D. Then we have a finite flat
morphism 7} — T. Consider the commutative diagram

P’

DXTT1—> D

gt i

X xT] —2— Xy X T ——— X

q q l

D=T, _Z T ——— spec(k) .

Let A: D — DxyD = D X7 T; be the diagonal map. It is a closed immersion
since the morphism ¢i is separated. Take s; = i’A. This is a section of ¢'.
Hence it defines a relative effective Cartier divisor on (Xy, x T})/T,. The
pull-back D; of the relative effective Cartier divisor D to Xy, X T 1is the
closed subscheme defined by /. Let Zp, and Z; be the ideal sheaves of the
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closed subschemes defined by i and s, respectively. Since s; factors through
i', we have Zp, C Z;. Hence D; — s is a relative effective Cartier divisor on
(Xm x Ty)/T; by Lemma 2.2 (b), that is, there exists a relative effective Cartier
divisor D;’ such that D; = s; +D,’. Now we take 7> = D;’. We then have
a finite flat morphism 7> — T, a section s,: 7> — X, X T> of the projection
Xm X T» — T>, and a relative effective Cartier divisor D>’ on (X X T2)/T>
such that the pull-back of D’ to X, x T» is equal to s, + D,’. Then we
take 75 = D,’..... In this way we get finite flat morphisms 7; — T;_;
(i=1.....n), sections s;: T; — X, x T;, such that the pull-back of D to
Xm X T, 1s equal to s; + --- 4+ s,, where the s; denote the relative effective
Cartier divisors on (Xy, x T,)/T, induced by the sections s;. This proves our

lemma.

Finally we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. By Lemma A.7, there exist a finite flat morphism
m: T — T and sections s;: T' — Xpu xT' (i=1..... n) of the projection
Xo X T" — T' such that the pull-back 7*D of D to X, x T’ is equal to
s1+ -+ 5,. By Lemma A.6, there exists a unique morphism of schemes
f'i T — (X — ™ such that the pull-back f*D of the universal relative
effective Cartier divisor D to Xy xT" is s+ +s5,. Let p1.pr: T'x7T — T’
be the projections. We have

(f'p0)" (D) =pif "D =pi(si+-+s) =pinD =psn'D = ... = (fp2)"(D).

that is, (f'p1)*(D) = (f'p2)*(D). By Lemma A.6 we have 'rr = f'p>.
By the theory of descent, ([SGA 1] VIII, Theorem 5.2), there exists a unique

morphism of schemes f: T — (X, — Q)" such that f' = fr, and the pull-back
of D to Xpu x T is D.
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