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ON THE CONSTRUCTION OF GENERALIZED JACOBIANS

by Lei Fu

Abstract. We give a modern exposition of the construction of generalized

jacobians using Weil's method.

0. Introduction

Generalized jacobians of algebraic curves are treated in detail in [S]. In this

book Serre uses the terminology "generic points" that is developed in Weil's

Foundations of Algebraic Geometry. Nowadays one uses the terminology in

Grothendieck's Éléments de Géométrie Algébrique, and it is hard for students

studying algebraic geometry to get used to Weil's terminology. At least my
personal experience tells me so. So in this paper we use Weil's method and

Grothendieck's language to construct generalized jacobians.

In § 1 we state a theorem of Grothendieck that is used throughout this

paper. In §2 we list some basic properties of relative effective Cartier divisors.
We construct a birational group in § 3 and show how to get an algebraic group
from a birational group in §4. In §5 we prove some fundamental properties
of generalized jacobians. The main results are Theorems 1 and 2. In §6 we

prove that the generalized jacobian of a curve is the Picard scheme of the

curve. The Appendix contains the proof of a technical proposition.
While preparing this note, I was helped by [A], [BLR], [Mi] and [S].

-
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1. A THEOREM OF GROTHENDIECK

The following theorem is a special case of Grothendieck's theorems, and

the proof can be found in [Mu] §5, [H] §3.12, or [EGA] III, §7.7.5, 7.9.4.

THEOREM 1.1. Let q: V T be a proper flat morphism of noetherian
schemes and let C be an invertible sheaf on V. For each t G T denote the

fiber V <&t spec(k(t)) of q at t by Vt, where k(t) is the residue field of T

at t. Denote the inverse image of C on Vt by Ct.

(a) The function t x(A) XX-1)' dim^) A) is locally constant

on T.

(b) For each i, the function t ^ dim^ Hl(Vt, Ct) on T is upper semicon-
tinuous.

(c) If T is reduced and connected and if 11—» dim^ Hl(Vt, Ct) is a constant

function on T, then Rlq*C is a locally free sheaf on T and the map
Rlq*C ®oT k(t) —> Hl(Vt, Ct) is an isomorphism.

(d) If Hl(Vt, Ct) 0 for all t G T, then Rlq*C 0 and q*C is a locally free
sheaf Moreover the formation of q*C commutes with any base change.

2. Relative effective Cartier divisors

Let q : X —> T be a morphism of noetherian schemes. A relative effective
Cartier divisor on X/T is an effective Cartier divisor on X that is flat over
T when regarded as a closed subscheme of X. When T spec(R) is affine,

a closed subscheme D of X is a relative effective Cartier divisor if and only
if there exists an open affine covering U[ — spec(R,) of X and gL G Ri such

that

(a) DnUi-spec (/?//((?;)) ;

(b) Qi is not a zero divisor;

(c) Ri/(gd is flat over R.

Remark 2.1. Let D be an effective Cartier divisor on X/T, let T(D)
be the sheaf of ideals defining Z), and let C(D) be the invertible sheaf

corresponding to D. We have C(D) X(D)~l. The inclusion 1(D) c Ox
induces Ox C l(D)~l C(D), hence a section sD of C(D).
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The map D (C{D).sd) defines a one-to-one correspondence between the

set of relative effective Cartier divisors on X/T and the isomorphism classes

of pairs (£,s), where C is an invertible sheaf on X and s is a global section

of C such that the map s: Ox ^ £ induced by the section s is injective and

Cjsöx is Or-flat.
The proof of the following lemma is straightforward and is left to the

reader :

Lemma 2.2.

(a) If D\ and Do are relative effective Cartier divisors on X/T, then so
is D\ + £>2-

(b) Let Di and Di be two relative effective Cartier divisors on X/T and
let T{D\) and TifDfi) be their ideal sheaves. If T{D\) C T(Di), then D\ — D%

is also a relative effective Cartier divisor on X/T.
(c) Let T' —* T be a base extension and let X' — X xT T'. If D is

a relative effective Cartier divisor on X/T, then its pull-back to a closed
subscheme D' of X' is a relative effective Carder divisor on X'/T'.

Lemma 2.3. Assume q: X —» T is flat. Let T be a coherent sheaf of
ideals of Ox and let D be the closed subscheme of X defined by T. If for
every point x G D, the ideal Tx of Ox.x is generated by one element gx
whose image in öx.x k(q(x)) is not a zero divisor, then D is a relative
effective Carder divisor.

Proof. It suffices to show that gx is not a zero divisor in Ox.x and
that Ox,x/(gx) is flat over 0T)Cjix). This follows from [EGA] §0.10.2.4 by
taking A OTMx), B Ox.x, M N Ox,x, and u: M - N to be the
homomorphism gx : Ox,x Ox.x defined by the multiplication by gx.

3. The construction of a birational group

Let X be a nonsingular irreducible projective curve over an algebraically
closed field k. A modulus m supported on a finite subset S of A is a divisor
of the form m £ nPP with each nP > 0. For any rational function f on

pes J

X, we write / 0 mod m if vP{f) > nP for every P e S, where vP is the
valuation defined by P. Two divisors D\ and Di on X prime to S are called
m -equivalent if there exists a rational function / satisfying 1 0 mod m
such that D, - D-, (/). If this holds, we write Dx Define a ringed
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space (Xm,öxm) as follows: The underlying set of Xm is (X — 5)U{ß}-
Define

°xm,Q k+{f \f 0 mod m}

and for every x G X — S, define öxm ,x &x,x • One can show that when

deg(m) >2, the ringed space Xm is a singular curve with a unique singular
point Q and its normalization is X. (It is easy to see that when deg(m) < 2,
the ringed space Xm is identified with X itself.) For a divisor D of X prime
to S, we put

Lm{D)H°(Xm, Cm),Hx {Xm

where Cm is the invertible sheaf on Xm corresponding to D. Denote the

dimensions of Lm(D) and Im(D) by lm(D) and im(D), respectively. The
Riemann-Roch theorem states that

/m(D) - im(D) deg(D) + 1 - tt

In this formula, tt is the sum tt g + 6, where g is the genus of X and
6 deg(m) — 1. All these results are proved in [S], Chapter IV.

For convenience, a closed point on a scheme is just called a point.
Let T be a connected &-scheme. Consider the Cartesian square

Xm x 7 > Xm

4 I
T > spec(&)

Since Xm is proper and flat over spec(fc), the morphism q is also proper and

flat. Let D be a relative effective Cartier divisor on (Xm xT)/T supported on

(Xm — Q) x T and let C be the invertible sheaf corresponding to D. Applying
Theorem 1.1 (a) to the morphism q and the invertible sheaf C, we conclude
that t ^ x(£r) is a constant function on T. By the Riemann-Roch theorem,

we have x(£r) deg Dt + 1 — tt So deg(Dt) is also a constant. This constant
is called the degree of D. Denote by Div(w)(T) the set of all relative effective
Cartier divisors of degree n on (Xm x T)/T supported on (Xm — Q) x T.

Let (X — S)(w) be the n-th symmetric power of X — S, i.e., the quotient
of (.X — S)n by the action of the n-th symmetric group 6n, where &n acts

on (X — S)n by permuting the factors. In the Appendix we show that there

exists a relative effective Cartier divisor V G Div(n)((X - 5)(,î)), called the

universal relative effective Cartier divisor, whose restriction to the fiber of
the projection Am x (X - S)(n) - (X - S){n) at Pi + • • • + Pn G (X — Sfl) is

the divisor Fj + • • • -f Pn of Xm. Moreover, we have
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PROPOSITION 3.1. The functor T ^ Div(77)(P) from the category of k-
schemes to the category of sets is represented by the symmetric power (X—Sfn).

More precisely, for any relative effective Cartier divisor D of degree n on

(Xm x D/T supported on (Xm — Q) x T, there exists a unique morphism

f: T —» (X — S)(77) such that the pull-back of V by id xf is D.

The proof of this proposition is given in the Appendix. The morphism
T — (X - Sfn) can be described as follows : For every t G T, identifying the

fiber of q : Xm x T —> T at t with Xm, we may regard the restriction Dt of
D to the fiber at t as an effective divisor of degree n on Xm supported on

Xm — Q. But this kind of divisor can be thought of as a point in (X — Sfn).
The morphism T —» (X — Sfn>) is just t Dt.

LEMMA 3.2. Let D be a divisor of X prime to S such that im(D) > 1.

Then there exists an open subset U of X — S such that for every P G U, we
have im(D + P) im(D) - 1.

Proof If P f Supp(D) U S, then the dual vector space Im(D + P)* of
7m(D + P) is identified with the subspace of 7m(D)* formed by differential
forms tu G 7m(D)* vanishing at P. Let {tuj,..., uim(D)} be a basis of 7m(D)*.
We can then take U to be the complement of

Supp(7)) U S U {P I ujfP) — 0 for I 1,..., /m(D)}.

Lemma 3.3. Let Do be a divisor of X prime to S of degree 0. Then the
set

yD0 {77 G (X — S)(7r) I lm(D + Dq) 1 and l(D + D0 — m) 0}

is non-empty and open in (.X —

Proof Consider the Cartesian square

Xm x(X- S)^ Xm

4 1

Cx - S)Wt. spec (A:).

Applying Theorem 1.1 (b) to q and the invertible sheaf C on x S)<71)

corresponding to the divisor T> +p*(Dq), where T> is the universal relative
effective Cartier divisor, we conclude that the set
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Vi {te(X- S)(7r) I dim H°(Xmy Ct) < 1}

is open, that is,

V) {DG(X — S)w I 1}

is open. By the Riemann-Roch theorem we have, for any D G (X — S)^,

An (D + Do) > deg(D + Do) + 1 — tt L

So we must have

V, {Z> G (X - S)w I + 1}

If /m(Do) ^ 0, then there exists a rational function / on X such that

(/) -f Do is an effective divisor on X prime to S. This effective divisor must
be 0 since it is of degree 0. Hence /m(D0) lm((/) + A)) An(0) 1. So

in any case we have /m(Do) < 1. By the Riemann-Roch theorem, we have

/m(D0) < 7T. Applying Lemma 3.2 repeatedly, we can find Pi,..,,P/m(A)) in
X - S so that im(D0 + h P/m(D0)) 0- Choose Pim w+ï,..., P^ in
X — S arbitrarily. We have

An (A) + P1 + ' ' • +P/m(D0)) A An(A) + Pl H fP/m(A)) /m(A) LH + ' ' * + Ptt) •

(This can be seen by interpreting im(D) as the dimension of the vector

space of differential forms uj regular at Q satisfying (co) > D.) So we
have An (Do + Pi + • • • + P*) 0. By the Riemann-Roch theorem, we have

An (Do + Pi + • —h Ptt) 1
• Hence Pi -f • • • + P^ is in the set Vi and Vi is

not empty.

Similarly by Theorem 1.1 (b) applied to the projection q: Xx (X — S)^ —>

(.X — S)(n) and the invertible sheaf on X x (X — S)(7V) corresponding to the

divisor V + p*(D0 — m), where p: X x (X — S)(7r) —> X is another projection,
we see that the set

y2 {D e {X-S)(7r)I l(D - m) 0}

is open. Since deg(Do —m) < 0, we have /(Do—m) 0. By the Riemann-Roch

theorem, we have /(Do — m) 7r. Applying Lemma 3.2 repeatedly (but taking
m 0), we can find P\,..., Pn G X—S such that /(D0—m+Pj H hPyr) 0.

Then by the Riemann-Roch theorem we have /(D0 — m + Pj 4 HPn) 0.
So Pi + • • • + Pyr is in V2 and V2 is not empty.

Since (X—S)(7r) is irreducible, the set VD() ViDV2 is open and non-empty.
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Lemma 3.4. Fix a point Po in S.

(a) The set

U {(£>1, D2)(X —S)w x (X - S)M

I lm(D1+D2- nPo) 1, +D2- ttPo - tn) 0}

is a non-empty open subset of X— S)'"' x (X S)'"'.

(b) The set

V {(Dl,D2) G (X - S)x (X - S)w

I lm(D2 - D] +7rP0) 13 1{D2 nP0 - m) 0}

is a non-empty open subset of (X — S)<7T) x (X — 5)'711.

Proof, (a) Let pl ,p2:(X-S)(7r)x (X-S)(7r) -v (X-5)(7r) be the projections

and let (/ 1,2) be the pull-backs by id x p, of the universal relative

effective Cartier divisor V on Xm x (X — .S7 "'. Put E E\ + E2. This is a

divisor on Xm x (X — S)i7T> x (X — S)(7r).

Consider the Cartesian square

Xm x (X - S)(7r) x (X - S)M —^ Xm

?I i
(X - S)(7r) x (X - 5)(7r) » spec(fc)

By the Riemann-Roch theorem, for any D2) G (X — 5,)(-7,") x (X — S)<7T>, we
have

lm(D\ + D2 - 7rP0) > deg(Di + D2 - ttP0) + 1 - 7r 1

that is, for any t G (X-S){7v) x (X-3')(7r), we have /m (Et — ttPq) > 1. Applying
Theorem 1.1 (b) to the projection q and the invertible sheaf corresponding to
the divisor E — p*(Po), we see that the set

U\ {f G (X — S)w x (X - £)w I lm(E, - ttPo) 1}

is open. Similarly the set

u2{tG(X - S)(1T) x (X - S)(n) I - - m) 0}

is also open. Hence the set U U\ fl U% is open.

Applying Lemma 3.3 to D0 — 0, we see that there exists a De (X — S)(7r)

such that lm(D) 1 and 1{D - m) 0. Then (£>, ttP0) is in U. So U is

non-empty. This proves (a).

The proof of (b) is similar and is omitted.
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Definition 3.5. A birational group over k is a nonsingular variety V

together with a rational map m: V x y —>• V, (a,b) i—» ab such that

(a) (ab)c — a(bc) when both sides are defined ;

(b) the rational maps O: (a,b) (a,ab) and T* : (a,b) ^ (b,ab) on V x V

are birational.

PROPOSITION 3.6. There exists a unique rational map

m:(X- S)(7r) x(X- S)M S)M

whose domain of definition contains the set U in 3.4(a) such that m(Z)i,Z>2)
is the unique effective divisor that is m-equivalent to D\ +£>2 — tvPq for any
(£>i,D2) G U. Moreover m makes (X — a birational group.

Proof Keep the notations in the proof of Lemma 3.4. Consider the

Cartesian squares

Xm </'(') > XmxUC Xm x(X~S)S) Xm

14 i 1

spec > U C (X - S)(7r) x S)(n) > spec(Â:).

Let C be the restriction to Xm x U of the invertible sheaf corresponding to

the divisor E\ + E2 — p*(ttPo). By Theorem 1.1 (c) and the choice of U, the

sheaf q*C is invertible. The canonical homomorphism q*q*C C gives rise

to s\ 0Xmxu ® (q*q*Q~l. We claim that the pair {£ 0 {cfiq*£)~x, s)

defines a relative effective Cartier divisor on (Xm x U)/U. According to
Remark 2.1, it is enough to check that s is injective and coker(s) is (9(/-flat.
Since £ 0 (q*q*£)~l is invertible, it is enough to verify st is injective for
all t e U by [EGA] §0.10.2.4, where st is the homomorphism obtained by

restricting .s1 to the fiber of q at t. It suffices to show that the restriction of the

canonical homomorphism q*q*£ —> £ to the fiber of q at t is injective. By
Theorem 1.1 (c) we have q*£(X>ouKt) H°(Xm,£t). So the restriction of the

canonical homomorphism to the fiber is £t)®kOxm ~> £t> Denote this

map by s't ; we need to show it is injective. But we have dimH°(Xm,£t) 1

since t G U. If we fix a nonzero element g G H°(Xmj£{), then s't is identified

with Oxm —> £t a a\-+ ag. This last map is injective since Xm is an integral
scheme and g can be thought of as a rational function. So st is injective.
Hence (£ <S> (q*q*£)~], s) defines a relative effective Cartier divisor. The

restriction of this divisor to the fiber of q at t is the divisor on Xm defined

by the pair (£t,g), which is supported on Xm — Q. So the divisor defined by
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(£ 0 (q*q*£)~\s) is supported on (Xm — Q) x U. By Proposition 3.1 there

exists a unique morphism of varieties m : U (X — S)^ such that the divisor

defined by (£ 0 s) is the pull-back by id x m of the universal

relative effective Cartier divisor V on Xm x (X — S)(7r). For any (D\,D2) E U,

we have lm(D{ + D2 - ttP0) 1 and 1{DX + D2 - ttP0 - m) 0. So there is

one and only one effective divisor m-equivalent to D\ + D2 — ttPo and it is

simply m(D\. D2).

Similarly, using Lemma 3.4(b) and Proposition 3.1, one can show that

there exists a morphism r: V —» (X — S)(7^ such that r(D\,D2) is the unique

effective divisor m-equivalent to D2 — D\ -F ttPo for any (DUD2) E V.

Let us verify that m defines a birational group on (.X - S)(7r). First we

show

m(m(D\, D2), £>3) MA, m(D2,D3))

when (Di,D2), (D2,D2), (ra(Z>i, D2), £>3) and (Dum(D2, £>3)) all belong

to L£ Indeed m(m{D\,D2),D3) is the unique effective divisor m-equivalent
to m(DuD2) + D3 — ttPo, and m(Dum(D2,D2)) is the unique effective

divisor m-equivalent to D1 + m(D2,D3) — ttPq. But m(D\, D2) + £>3 — itPq
and D\ -f m(D2,D3) - ttPo are m-equivalent since both are m-equivalent to

D\ + Lb + £>3 — 2ttPq. So we have m(m(D\, /Jb). ££) m(D\, m(D2, ££)).
One can also verify m(D\,D2) — m{D2:D\) when both (Di,£b) and

(D2,Di) are in U, that is, the operation m is commutative.

Next we show that 0: (D\,D2) 1-» (D\,r(Di,D2)) is the birational inverse

of O: (D\,D2) ^ (£fi,jn(D\,D2)) so that O is birational. Since the operation
m is commutative, the rational map Tb (D\,D2) \—> (D2. m(D\, D2)) is also

birational. Therefore m makes (X — 5)(7r) a birational group.
First we verify O0(Z)i,D2) (DUD2) whenever the left-hand side is

defined. We have

OQ(DuD2) 0(DuKDuD2)) (Dum(Dur(DuD2))).

Moreover m(D\. r(D\, />?)) is the unique effective divisor m-equivalent to
£>1 + r(D\.D2) — ttPq But D2 is also an effective divisor m-equivalent to
D\ + r(I)\. D2) — ttPq since we have

D\ + r(D\, D2) — 7i\P0 ~m £fi + (£b — £>i + 7rPo) — tuPo D2

Hence m(D\, r(£>j, Z)2)) D2 and O 0(£h, D2) (£fi, D2).
Similarly one can show that 0O(£>},D2) (DUD2) when the left-hand

side is defined.
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Note that O is a regular morphism defined on U and 0 is a regular
morphism defined on V. Since

O 0(D!, D2) (D\, D2) and 0 O{Dx, D2) (Di, D2)

whenever the left-hand sides are defined, the maps O and 0 induce regular
morphisms O: Un®~l(V) VnS~l(U) and 0: Vne~](U) Un^~l(V).
To show that O and 0 are birational inverses to each other, it is enough to
check that £/n<D-1(V) and yn0_1(f/) are non-empty.

Note that (Di,D2) G U nO_1(V) if and only if (Dl5D2) G U and

,D2) - D\ 4- ttPq) 1, l(m(D\,D2) - Dx +1rP0 - m) 0.

Since m(D\,D2) Di -f D2 — ttPq, the above equations are equivalent to

lm(D2)= 1, /(D2 — m) 0

Applying Lemma 3.3 to the divisor Do 0, we conclude that the set

Vo {D G (X - S)(7r) I /m(D) 0, KD - m) 0}

is open and non-empty. Since (.X — S)(7r) x (Z — S)(7r) is irreducible, the set

Un((X—S)(7Ç} x vb) is also open and non-empty. This set is exactly UD<&~](V).
So D nO_1(V) is non-empty.

Similarly Un0_1(D) is also non-empty. This completes the proof of the

proposition.

4. From birational groups to algebraic groups

Let k be an algebraically closed field, let V be a connected nonsingular

variety over k, and let m: V x V —» V, (a,b) ab be a rational map

satisfying (ab)c a(bc). Assume the rational maps 0(a,b) (a, ab) and

ThyqZ?) (b,ab) are birational. Then there exist open subsets X®, To, Xy
and Lvp in V x V such that O induces an isomorphism X® To and

induces an isomorphism Zy Y\y. Put Z Z<d H To H Zy H

It is convenient to write the formulae for O-1 and VP-1 as $>~l(a,b)
(a,a~lb) and &) (ba~l, a).
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LEMMA 4.1. Replacing y by an open subset, we may assume the two

projections pp. Z V (i 1,2) are surjective.

Proof Note that the two projections pp. V x V —» V, (i 1,2) are flat
since V --> spec(fc) is flat. So the pt are open by [EGA] IV, §2.4.6. Hence

the pi(Z) are open. Let V' pi(Z) Dp2(Z). We claim V' has the property
stated in the lemma. Let C — V — V' and let A (C x V) U (V x C). The

subset X0 of V' x V' corresponding to X<j> is the complement in X$> of
S (X0 fi A) U 0-1(Fo HA). We claim that if the fiber of p\ : X® —> V at

v G V is contained in 5, then v G C. Thus : X<e/ —» V7 is surjective.
Let us prove the claim. Assume (v x V) C S, but v C. We have

(vxV)nX^ C ^CAUO"1^) C (C x V)U(V x OUO^tCx V)UO-1(V x C).

Since V is irreducible, we must have

(v x V)nX0 C C x V, V x C, 0-1(C x V), or 0_1(V x C).

Since v ^ C, we have

(u x V) n X0 ^ C x V, 0_1(C x V).

So

(v x V) n Xo C V x C or 0~l(V x C).

Assume (t# x V) n X0 C V x C. Note that since v g C, we have v G V7.
Hence (u x V) n X$ is not empty. So we have

dim V dim((u x V) H X0) dim(((u x V) H X&) n (V x C))

< dim(u x C) < dim V,

that is, dim V < dim V. This is impossible.
Assume (v x V) n X0 c &"l(V x C). Then ®((y x V) n X0) C V x C.

Since O is birational, we have

dim V dim &((v x V) n X0) dim(&((v x V) n X0) H (V x Q)
< dim(u x C) < dim y,

which is again impossible. So we must have v G C.
Next we show that if the fiber of p2 : X0 -> y at v G y is contained in 5,

then v Ê C, and hence p2: X0 W is surjective.
Assume (V x v) n X0 C S but v £ C. As before we have

(V x ujnXcD c c x y, y x c, o_1(c x v) or o_1(y x c).
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Since v f. C, we have (V x v) H X® (£_ V x C. By counting dimensions,

one can show (V x v) H X® <f_ C x V. Since 0-1(C x V) C C x V, we have

(Vxu)nXo £ 0_1(Cx V). So we can only have (Vxv)ilX0 C <S>~\VxC).
Then we have a rational map

V A (V x t?) OX® V x C -A C,

where tfx) (x.v). This map : V —> C is nothing but * i—» xu and it
is birational. (Its birational inverse is p\xP~lt2, where i%(x) (u,x).) So V
is birational to C. This is impossible since dim V 7^ dimC. So we must have

v G C. This finishes the proof of the surjectivity of P2 : X& -a W.

Similarly p; : —> V' are surjective. Since the fibers of
Pi\ Vx V —» y are irreducible, the projection pp. Z' — X^Y^nX^nYf — V'
is also surjective.

Having replaced V as in Lemma 4.1, we may assume V satisfies the

following properties :

PROPERTY 4.2. There exists an open set Z C V x V such that O,
and x¥~l are defined on Z, the restrictions 0|z and T'lz are open immersions,

and the projections pp. Z V are surjective. Hence for every v G V, the

maps O, O"1, T* and VF_1 are defined at (v.x) and at (x:v), provided x
is generic, i.e. lies in an open set.

LEMMA 4.3. Assume 4.2 holds. Denote the closure of the graph of m in

y x y x y by r. Then the projections piji T —» y x y (1 < i < j < 3) are

open immersions.

Proof. By [EGA] III, §4.4.9, it suffices to show that the maps pV] are

set-theoretically injective. Let 1 be a point of V. The two rational maps
T —> y defined by

(a. b1 c) 1—» (xa)b and (a, b. c) 1—» xc

are equal by the associative law. Let (a.b.c), (a.b.c') G T. Choose a

so that (.xcT)b is defined and (x, c), (x, c') G Z. Then xc (.xa)b xc'

Hence 0(x, c) 0(x, c'). Since O is an open immersion on Z, we have

(jc,c) (x, c'). Hence c — c'. This shows that pn'. T —> y x y is injective.

Similarly one can show the other projections are injective.

We will now expand y to the group we want by glueing translates of V.

Let 5 be a point of y and let Vv be a copy of y thought of as the
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translate Vs {us | v G V}. The subset Ws (V x s x V) D T is closed in

VxsxV=VxV, and the two projections Ws —> V are open immersions
because they are the base extensions of the open immersions pij : T —> V x F
by the base changes V x j —» V x V and s x V —» VxV, respectively. Therefore

Ws defines glueing data and yields a separated scheme V' V \Jws Vs.

LEMMA 4.4. V is an open dense subset of V' and V' satisfies 4.2.

Proof. Since xs is defined for generic xGf, the set VPi Vs is not empty.
So V' is irreducible and V is dense in V'. We have

V' X V' (V x V) U (V x Vs) U (V, xV)U (Vs x Vs).

For every point v G V, denote by vs the point v considered as a point in
Note that if (v,s) £ Z, then vs G V and vs G Vs are glued together in V'.
Define Rs : V —» Vs by v vs. Let

W{ {(a,b) G V x L I (a, b), (s,a) and (b. sa~l) are all in Z}

This is a non-empty open subset of Z. Take Z\ (id x /^XW) C V x W.
We define O, ¥, O-1 and W~l on Z\ by

0(a, bs) (a, (ab)s) G V x V,,
¥(<2, £>,) (bs, {ab)s) eVsxVS3

®~l(a,bs) (a, G V x h
^ y x y

for any (a, bs) G Zi. Let

W2 {(a, b) £ V x V

| (.y, 6), (a,sb), (s,a~lb) and (bs~\à) are all in Z}
This is a non-empty open subset of Z. Take Z2 (Rs x id)(W2) C Vs x V.
We define O, TX O-1, and T7"1 on Z2 by

Q>{as,b) 0aS)a{sb)) G h x y,
Tfiyu,/?) {b,a{sb)) G V x V,

fe^_1(a_1/7)) G Vy x y,
T/_1(ß,3i?) ((àw1)^-1,^) eyxy,

for any (as,b) G Z2.
Let Z' Z U Zj U Z2. It is an open subset of V' x Vf and O, SP,

T1"1 are defined on it. One can show that ®\z, and W\z> are open
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immersions. Given v G Vf we need to show there exists x G V' such that

(x, u) and (u,x) are in Z'. This is true if v G V by the property of Z. If
u G Vs, then v — as for some a e V. We leave it to the reader to show that

(x, a.v) G Zj and (as.x) G Z2 for generic x in V. This completes the proof of
the lemma.

The above lemma allows us to replace V by V', hence to expand V
whenever there exists a point s in V such that vs is not defined for all

v G V, and we can expand V' if there exists a point s' G V' such that v's! is

not defined for all v' G V'. Denote the result of finitely many such expansions
also by W, and let U C V x V x V7 be the closure of F. By Lemma 4.3

applied to V', the projection £>12: U ^ V x V is an open immersion. Its

image is the set of points (a,b) such that m: V x V —>• V' is defined at

(a,b). If V x s (jL p 12(F) for some point s in V, then replacing V' by
V' U V/ increases both V' and puiU). Using noetherian induction on open
subschemes of V x V, we may assume that after finitely many expansions,
F x s C pn(U) for all points s G F. Then we have pn(U) V x V.

PROPOSITION 4.5. Let V, V', and U be as above. If pn(U) V x V,

then the operation m: V' x V' —» V' is everywhere defined on V' and makes

V' an algebraic group.

Proof Take (a' ,b') in V' x V'. Choose a point x so that a'x and x~lb'
are both defined and lie in V. Then we can define m(a,1br) (a'x)(x~~xb').

Similarly one can define a'~lb' and b/a,~]. In this way we extend m, O,
T/, O-1 and T/_1 to V' x V'. The verification of the group axioms is routine
and is omitted.

5. Fundamental properties of generalized jacobians

Keep the notations in §3. We have proved that there is a birational group
structure on (X — S)(7r). The algebraic group associated to this birational group
is called the generalized jacobian of Xm and is denoted by Jm. It is a

commutative algebraic group.
Let Do be a divisor on X prime to S of degree 0. By Lemma 3.3, the

set

VDa — {D & {X —S)M I lm(D + D0)=l, l(D - m) 0}

is a non-empty open subset of (.X — S)(7r). We have the following
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LEMMA 5.1. There exists a unique morphism of varieties

aDo : VDo -(.V • S)
such that QiD0(D) is the unique effective divisor ni-equivalent to D + Dq for
any D G Vß0. Moreover ap0 is birational

Proof Consider the Cartesian squares

Xm X VDo C Xm x (X - —?— Xm

4 1 1

VDo C (X - S)t spec(/c)

Let C be the restriction to Xm x VDll of the invertible sheaf on Xm x S)'"'
that corresponds to the divisor V + p*(Df), where V is the universal

relative effective Cartier divisor. By Theorem 1.1(c) the sheaf q*C
is invertible. The canonical map q*q*C —> C induces a homorphism
$: Oxm x vD{)

£> ® (q*q*C)~l. Using Remark 2.1, one can show that
the pair (£ 0 (q*q*C)~{, s) induces a relative effective Cartier divisor on
(Xm x Vd{))/Vd{) • Applying Proposition 3.1 to this divisor, one gets the existence
of aDo. For any D G VDo, we have lm(D + D0) 1 and l(D + Dq — m) 0.
So there is one and only one effective divisor m-equivalent to Z) + Do, and
this effective divisor is simply ao0(D).

We claim that a-p0 is the birational inverse of aoQ We have

ay(V_Do) {DI D eVDo, aD(D)eV_Do}

{DIDeVDn. lm(atD0(D) — Do) 1, 1(q>d0(D) — Dq — m) 0}
VDo n {D I lm(D)1, l(Dm) 0}
vDo n y0 •

By Lemma 3.3 both Vß(] and Vq are open and non-empty. Since (X — S)^ is
irreducible, the set VD{) n V0 is also open and non-empty, that is, q^(V_£,0)
is open and non-empty. One can easily show that on this open set a_Do o aDo
is defined and is the identity. Similarly one can show (VDo) is open and

non-empty, and on it aDo o a_Do is defined and is the identity. So aDo is
birational.

We have a birational map ifi : (X - S)(7r) Jm by the construction of Jm.
Let dom(p) be an open subset of (X - S)(7r) such that (^domM is an °pen
immersion, Moreover we may assume that for any a G dom(y>), both (a,x)
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and (x. ci) lie in the set U defined in Lemma 3.4(a) if x is generic, i.e., lies

in some open set. In particular, m(a1x) and m(x1a) are defined for generic x.
Let

Udo VDo n dom(¥>) n aö0'(dom((p)).

Note that UoQ is open and non-empty since (X — S)(7r) is irreducible and ao0
is birational. Moreover tp(D) and ip(aDo(D)) are defined for any D G UD().

Define

0O(A>) p(aDo(D)) - <p(D).

LEMMA 5.2. #o(A)) does not depend on the choice of D.

Proof Let D\ and D2 be two elements in Ud0. We need to show that

<p(aDo(Di)) - p(Di) cp(aDo(D2)) - ip(D2).

Choose D3 g UDo so that (aDo(Di), D3), (DuaDo(D3)), (aDo(D2),D3) and

(D2, o^d0(D3)) all lie in the set U defined in Lemma 3.4(a). Such a D3 exists.

Indeed, if (a£>0(Di),x), (Di,x), (qid0(D2),x) and (D2,x) all lie in U for

x lying in an open set O, then we may choose D3 to be any element in

UDo HOD Note that UDo Hdfl is not empty since aDo is

birational and (X — Sf7^ is irreducible.
We have

V(olDo(Di)) + p(D3) (p(m(aDo(D\), D3)),

cp(Di) + (p(aDo(D3)) aDo(D3)).

Since

m(aDo(Di), D3) aDo(Di) + D3 - irP0 £>1 + A) + D3 - 1rP0

m(D\, ao0(D3)) D\ + Q!d0(A) — ^P0 D\ + D3 + Do — TYP0

we have

m(aDo(D{),D3) m(Du aDo(D3)).

Hence

<p(aDo(D 1)) + p(Dx) + p(aDQ{D3)),

that is,

tp(oio0(D\)) — p(D\) p(aDo(D3)) — cp(D3).

Similarly we have

V(aDo(D2)) ~ <f(D2) p(aDo(D3)) - tp(D3).

Therefore

(^(az)o(Di)) - p(D\) p(aDo(D2)) - p{D2).

This proves the lemma.
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Thus we have a well-defined map 0q : Div(0) —» Jm from the set of divisors

of degree 0 on X prime to S to Jm.

Lemma 5.3. 6*o is a homomorphism.

Proof. Let Dq,Eq G Div(0) and let F0 — Z)0 + E0. Choose D G UDo,

E G Ueq and F G UFo so that

(aDo(D),aEo(E)), (D,E),(, n(aDo(D), aEo(Eand

all lie in the set U defined in Lemma 3.4(a). We have

am(D) + aEo(E) + F~mD + Do+E + E0EFmD + E + F + Do + E0,
D + E + aFo(F) ~mD + E + F + F0 D + E + F + Do+E0.

So

m(m(aDo(Z)), aEo(E)), F) m(m(D, E), aFo(F)).

Hence

Lp{m(m(aDQ(D), aEQ(E)), F)) E), clFq(F))

Therefore

tp(aDfD)) + p(aEo(E)) + ip{F) (^(D) + <p(E) + (p(aFo(F)),

or equivalently,

(^(gdoC^)) — <£>(0)) + (tpi&EoiE)) — ip(E)) (f(aFo(F)) — (p(F).

This last equality is exactly

#o(A)) + Oo(Eq) 6*0(1)0 + £0) •

So 6*o is a homomorphism.

We define 6: Div —> Jm from the group of divisors on X prime to S to
Jm by

0(D) 0Q(D - deg(D)Po) •

Obviously 6 is a homomorphism.
Iter-..--
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PROPOSITION 5.4. The homomorphism 6 is surjective and ker(0) consists

of divisors m-equivalent to integral multiples of Pq.

Proof Assume J2J=\Pi in dom(<^). We have

7T 7r

0CCF<) d°(J2Pi~*p*) v(UD0m - <P(D)

1=1 i=\

where Dq Ym= i and D G UDo. We may choose D so that

mQ2J=i Pi,D) is defined and is the unique effective divisor m-equivalent
to Pi + T> — kPq Since aDo(D) is the unique effective divisor m-
equivalent to D + Dq D+ Jflli Pi — nPo, we have m(Jf^=l Pt. D) — aDo(D).
Hence (^ŒXi PhD)) p(aDo(D)). So ip(£J=l Pt) + <p(D) cp(aDo(D)).
Therefore p(aDo(D)) - p(D) <p(X)Li B/), that is>

v(è^)-
1=1 1=1

This is true whenever X^/li p( is in dom((p).
Since p\dom^ is an open immersion, (p(dom((p)) is an open subset of Jm.

The image of 6 contains this open subset. But Jm is generated by any open
subset. So we must have lm(0) Jm and 0 is surjective.

Assume E G ker(0). Then Oq(E — deg(F)P0) 0 • Put Eq E — deg(F)P0 •

Then for any F G UEo we have

<P(<*Eo(F)) ~ Oq(E - deg(F)P0) 0.

Hence p(aEo(F)) t(F). But p is an open immersion on dom((p). So we
have aEo (F) F. Since aEo (F) F + Eq, we have F F -f Eq. Hence

Eq 0, that is, F deg(F)Po. So F is m-equivalent to an integral

multiple of Pq.

Conversely assume E is m-equivalent to an integral multiple of Pq and

let us prove that 6(E) 0. Again let Eq — E — deg(F)P0 • Then Eq 0.
Choose F G UEo Cl Uq, where Uq is the set UDq defined before by taking
Dq 0. We have

0(E) Oq(Eq) p(aEo(F)) - p(Ff
0(0) p(a0(F)) - <p(F).

Note that F + Eq F since Eq 0. But aEo(F) is the unique effective

divisor m-equivalent to F + Eq, and aç(F) is the unique effective divisor m-
equivalent to F. So we must have aEo(F) ao0E). Therefore 6(E) — 0(0) 0.



ON THE CONSTRUCTION OF GENERALIZED JACOBIANS 35

Regarding a point P in A - S as a divisor, we can calculate 0(P). In this

way we get a map 9 : A — S —> Jm.

Proposition 5.5. The map 9\ X - S —> Jm is a morphism of algebraic

varieties.

Proof Let P eX-S and let D0 P - Po. Fix a D 6 (JDo. Consider

the set VPi {A G A - S | Zm(D + 7? - P0) 1}. By the Riemann-Roch

theorem, for any R in X — 5, we have lm(D -PR — Po) > 1- Applying
Theorem 1.1 (b) to the projection q: Am x (X — S) —> A — S and the invertible

sheaf corresponding to the divisor V + p*(D — Po), where V is the universal

relative effective Cartier divisor on Am x (X — S) and p : Xm x (X — S) —> Am

is another projection, we see that Wj is open in A — S. Similarly one can

show W2 {A G A - S I l(D + R — P0 - m) 0} is also open in A - S. So

w wlnw2 {Rex-S\ lm(D + R-P0) 1, /(£> + R - Po - m) - 0}

is open in A — S. It is non-empty since P G W by our choice of D. By
Proposition 3.1 we have a morphism 7: W —» (A —5)(7r) of algebraic varieties

such that for every A G IT, 7(A) is the unique effective divisor that is m-
equivalent to D + R — Po. Since aR-p0(D) is the unique effective divisor that
is m-equivalent to D + R — P0> we have 7(R) aR-Po(D). Replacing W by
an open subset containing P, we may assume Im(7) C dom(<£>). Note that for
any R eW, we have D G Ur-p0 and

9(R) 0o(R - Po) p((aR^Pom - p(D) p(j(R)) - p(D),
that is, 9(R) p(j(R)) — p(D). So 0 p o 7 — (/9(D) on VP. This proves 6

is a morphism of algebraic varieties in an open subset containing P. Since
P G A — 5 is arbitrary, 0 is a morphism of algebraic varieties.

The morphism 9 : X — S Jm induces a morphism of algebraic varieties
19:{X-S)W~*Jm.

PROPOSITION 5.6. 0: (X — S)^ —» 7m coincides with the birational map
p : (A — S)(7r) —> Jm. In particular p is everywhere defined.

Proof. Let X)/Li ^ C dom((^). By the proof of Proposition 5.4, we have
^CCjLi ^(XZJLi ^i)- ^ — 9 as rational maps.

Thus there is no difference between p and 9. From now on we denote
the map p also by 9. We summarize what we have so far in the following
theorem.
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THEOREM 1. There is a morphism of algebraic varieties 6 : X — S —> Jm

satisfying the following properties :

(a) The extension of 6 to the group of divisors on X prime to S induces,

by passing to quotient, an isomorphism between the group of classes of
divisors of degree zero with respect to m-equivalence and the group Jm.

(b) The extension of 6 to (X — S)^ induces a birational map from X(n)

to Jm.

The following theorem characterizes Jm by a universal property :

THEOREM 2. Let f : X —» G be a rational map from X to a commutative

algebraic group G and assume m is a modulus for f. Then there is a unique

homomorphism F : Jm —>• G of algebraic groups such that f F o 9 +/(Po)-

Proof Replacing / by f —f(Po), we may assume f(Po) 0. Since

m is a modulus for /, the extension of / to the group of divisors of X
prime to S induces a homomorphism —>• G by passing to quotient. By
Theorem 1 (a) we have Jm as groups. So we have a homomorphism
of groups F: Jm —» G such that / F0. It remains to prove F is a

morphism of algebraic varieties. By Theorem 1 (b) we have a birational map
6 : (X — S)^ —> Jm. Denote the extension of / to (X — S)(7r) by f. Then

F6 f. Since 6 is birational, it induces an isomorphism between an open
subvariety of (X — S)(7r) and an open subvariety of Jm. Moreover ff is a

morphism of algebraic varieties. Hence F is a morphism of algebraic varieties

when restricted to some open subset of Jm. The whole Jm can be obtained

from this open subset by translation. So F is a morphism of algebraic varieties.

6. Generalized jacobians and Picard schemes

In this section we prove Jm is the Picard scheme of Xm.

Let T be a k-scheme. Consider the Cartesian square

Xm x T * XmiIT >• spec(k)

We have q*0XmXT Ot by [EGA] III, §1.4.15, the fact k,
and the fact that T —* spec(fc) is flat. The morphism q has a section

s : T —¥ Xm x T, t h-> (Pq, t).
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LEMMA 6.1. Let C\ and £2 be two invertible sheaves on Xm x T. Assume

£j £2. TTzen canonical map Hom(£i,£2) Hom(A*£i,^*£2) induced

by s is bijective.

Proof. Since £1 B £2, it is enough to show that the canonical map

Hom(£i, £1) -> Hom(££i,^£i) is bijective. We have a commutative diagram

OxmxT(XmxT) > Ot(T)

i 1

Hom(£i,£i) > Hom(L£i,/£i)
where the horizontal arrows are induced by .v. We have

Hom(£i, £1) Hom((9xm x7 - £1 *)

« Hom(Oxm x7': 0Xm x 7 — 0Xm x r(Xm x T).

Hence the left vertical arrow in the above diagram is bijective. Similarly
the right vertical arrow is also bijective. Since q*OxmxT — Or, we have

0Xmxr(Xm x T) (D(T), and the upper horizontal arrow is bijective. Hence

Hom(£i,£i) Hom(££i,5*£i) by the commutativity of the above diagram.

Lemma 6.2. Let {Uj} be an open covering of T and let £,• be invertible
sheaves on Xm x Uj. Assume s*£j GUi and £/ \Xm X(wnUj)= £/ Um x(t/,n%)<
Then there exists an invertible sheaf £ on Xm x T such that £ \XmXU.= £,-

and s*£ Oj. Moreover £ is unique up to isomorphism.

Proof. Fix an isomorphism cq: s*£j —* Out for each i. Let

aij: £/1Î/,-n î/y- ~* ££/| I/,-nt/,-

be the isomorphism (aj\UinUj)~l o By Lemma 6.1 the canonical
map

Hom(£,jxm x(UinUj), LfXm x^nup) -+ HomC^X/k-nu,-, s* Cj\UinUj)

is bijective. So cqy can be lifted uniquely to an isomorphism

Aij '• £/ \xmx(UinUj)^ £/ |xm x(UjnUj) •

By the uniqueness of the lifting and the fact that ajkajj on C/?nC$fT Uk,
we have A^A/y Alk on Xm x (Uj D Uj H Uk). So Ay defines glueing data
and we can glue the £,- together to get an invertible sheaf £ on Im x f. By
the construction of £ we have s*£ ÖT. This proves the existence of £.
Similarly using Lemma 6.1 one can prove £ is unique up to isomorphism.

Éfr:
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LEMMA 6.3. Assume T is integral. Let C\ and £2 be two invertible
sheaves on Xm x T satisfying C\t £2, for aH t E T. Then there is an
invertible sheaf Ai on T such that C\ £2 ®q*A4.

Proof Let £ C\ 0 Cfl. Then Ct 0Xm It suffices to show that

£ q*Ai for some invertible sheaf A4 on T. We have H0(Xm^Ct)
H°(Xm, 0Xm k. By Theorem 1.1(c), the sheaf q*C is invertible and

#*£ 0 fc(0 H°(Xm,Ct). So the restriction (q*q*C)t —» Ct of the canonical

map q*q*C —> £ to the fiber of g at t E £ is #°(Xm, £t)®0Xm —> £r, which
is an isomorphism since £, CYm • By Nakayama's Lemma, the canonical

map q*q*£ —» L is surjective. But since it is a homomorphism of invertible
sheaves, it must be bijective. Hence £ q*q*C.

Now we use the above lemmas to construct a canonical invertible sheaf

On Xm X JXXV
•

On Xm x (X—Sf^ we have the invertible sheaf corresponding to the divisor

V — p*(ttPq), where V is the universal relative effective Cartier divisor and

p : Xm x (X — S)(7r) —>• is the projection. Since 6: (X — S)(7r) —> £m is

birational, there exist open subsets £/ in (X — Sf7r) and V in £m such that
0 induces an isomorphism U V. Hence we can push-forward the above

invertible sheaf on Xm x (X^ S)^ to get an invertible sheaf Cy on Xm x V.
For each t E Jm, denote by C{t) the invertible sheaf on Xm corresponding
to the divisor class in that is mapped to t E £m under the canonical

isomorphism C^=Jm. Obviously the restriction Cyy of Cy to the fiber of
the projection q\ Xm x/m —>• /m at t E V is isomorphic to C(t). The invertible
sheaf Cy 0 (q*s*£y)~l has the same property, where s: £m —> x Jm is

the section tb^ (Po, t). Thus replacing Cy by £^(^Y£y)_1 if necessary,

we may assume that s*£y Oy.
For each a £ Jm, let £_fl : Jm Jm be the translation t t —a. Consider

the invertible sheaf £a+v (id x £_fl)*£y 0p*£(a) on Xm 0 (a + V), where

p: Xm x Jm —> Xm is the projection. The restriction Ca-yv,a+t of £fl+y to the

fiber of q at a + t E a + V is

((id x T-a)*Cv 0 p*£{a))a+t £y,/ 0 £(a) £(0 0 C(a) £(<z + t),

that is, £a+y .#_M - C(a + t). Hence for any t E V fl (a + V), we have

CV t Ca+yy. By Lemma 6.3, we have

£y|xm x(vn(a+v)) — £fl+v|xm x(vn(a+v)) ® q* Ai

for some invertible sheaf Ai on Vn(a + V). But since s*Cy Oy, we also

have s*£a+y — Oa+y. Hence A4 Oyn(ö+v)- Therefore £y]xmx(yri(a+v)) —
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£a+v\xmx(vr\{a+v)) - By Lemma 6.2, we can glue Ca+v (a C Jm) together to

get an invertible sheaf £Jm on Xm x Jm. It has the property that its restriction

to the fiber of q at t G Jm is isomorphic to £{t) and s*Cjm Ojm

Define

P°(T) {£e Pic(Xm x T) I deg(L) 0}/q* Pic(T),

where deg(L) is defined as the leading coefficient of as a polynomial

in n. Since s*q* id, we may define

P°(T) {£ G Pic(Xm x T) I deg(L) 0 and s* C Ot}

as well. In particular, we have £Jm G P°(Jm). Using the first definition

of P°(T) and Lemma 6.3, one can show that the pull-back of £jm by

id x 6 : Xm x (X - S)(lT) — x /m is the invertible sheaf on Xm x (X - S)(7r)

corresponding to the divisor V— p*(7rPo)-

The following theorem says that Jm is the Picard scheme of Xm.

THEOREM 3. The functor T P°(T) is represented by Jm. More precisely,

for any invertible sheaf C on Xm x T of degree 0 satisfying s*£ Ot,
there is one and only one morphism of schemes f:T—» ./m such that £ is

the pull-back of £jm by id x / : Xm x T —> x Jm.

Proof Let V0 {D e (X - S)(7r) | /m(D) 1, l(D — m) 0}. By
Lemma 3.3, we know Vo is non-empty and open in (X — S)^. Note that
for every D G Vo, there is one and only one effective divisor in Xm that is

m-equivalent to D. Hence the restriction 0\Vo of 0: (X — S)(7r) ^ Jm to Vo

is injective. By [EGA] III, §4.4.9, Q\Vo is an open immersion.

Consider the Cartesian square

xm X T Xm

'1 i
T » spec(k)

Let £' £ (g) p*£(ttPo), where £(nP0) is the invertible sheaf on Xm

corresponding to the divisor ttP0. Let us prove the theorem under the
extra assumption that for every t G T, we have dimtf°(Xm, £'t) 1 and
dim//°(X, £'t 0 £{—m)) 0, where £{—m) is the invertible sheaf on X
corresponding to the divisor -m. By the Riemann-Roch theorem, for every
f G 7\ we have dimHx{Xmi£'t) 0. By Theorem 1.1(d) the sheaf q*£' is
invertible. The canonical map q*q*£f £' induces
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Using Remark 2.1, one can show that the pair (£' 0 (q*q*C)~l rs) defines

a relative effective Cartier divisor on (Xm x T)/T. By Proposition 3.1, there

exists a unique morphism of schemes g : T —> (X — S)(7r) such that the pull-
back by id x g of the universal relative effective Cartier divisor V is the

divisor defined by (£' 0 (q*q*Cf) ~~\s). Let / Og. Then the pull-back of
£Jm by id x / is £. This proves the existence of /. To prove / is unique,

assume is a morphism such that the pull-back of £./m by id xf
is £. By our extra assumption, we must have Im(/) c 0(Vq). But 9|y0 is

an open immersion. So there exists a morphism g: T (X — S)(7r) such that

f 6g. We leave it to the reader to prove that the pull-back of the universal

relative effective Cartier divisor V by id x g is the divisor defined by the

pair (£' 0 (q*q*C')~x, s). By Proposition 3.1, such kind of g is unique. So

/ is also unique.
Now let us prove the theorem. Let to be a point in T. For every point

D G (X — 5)(7r), denote by £(D) the invertible sheaf on X or on Xm

corresponding to the divisor D. By Lemma 3.3, the set

{DG (X — S)(7r) I dim H°(Xm,£t0®£(D)) 1, dim//°(X, £f0®£(D-m)) 0}

is non-empty (and open). Fix an element D in this set. Consider the set

U,0 {tGTI dim H°(Xm,C,® C(D)) 1, dim//°(X, C, ® C(D - m)) 0}

This set is open by the Riemann-Roch theorem and Theorem 1.1 (b). Obviously
it contains to. So UÎQ is an open neighbourhood of to. By the theorem with
the extra assumption that we have already proved, there exists a unique

morphism fUt : Ut{) Jm such that the pull-back of £Jm by id x is

(£ 0p*C(D - /KPo))\xmxu,i] • Put fUh =fut + where a is the point in Jm

corresponding to the divisor class ttPo — D in Obviously the pull-back
of CJm by the morphism id xfut{) is £ \xmxutQ- Moreover, such an fUtQ is

unique. So we can glue fut{) together to get /: T —> Jm.
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Appendix: Proof of Proposition 3.1

We start with some lemmas.

LEMMA A.l. Let A be a commutative ring with identity on which a finite

group G acts, let AG be the invariant subring, and let B be a flat AG -algebra.
Then G acts on B ®ag A through its action on the second factor and the

invariant subring of this action is B.

Proof We have an exact sequence

0 ^ Ac —> A ^ ]q A

gEG

where n A die direct product of |G| copies of A, and A —» ü ^
geG geG

defined by a ^ (ga — a). Since B is a flat AG -algebra, the tensor product of
B with the above sequence remains exact, that is, the sequence

0 —I B —> B <S)ag A —> B A

gee

is exact. Hence B — (B ®ag A)g

Let A be a finitely generated k-algebra on which a finite group G acts.

Then A is finite over AG. For every prime ideal q of AG, let pi,... be

all the prime ideals of A lying over q. It is known that G acts transitively
on {pi,...,p„}. Fix a p G {pi,... ,p„}. Let e p} be the

decomposition group at p.

LEMMA A.2. Notation as above. Let AGq be the completion of the local
ring AGq and let Ap be the completion of the local ring Ap. Then Gd acts

on Ap and (Ap)Gf/ =AGq.

Proof. Since AGq is a flat AG-algebra, we have (AGq 0agA)g AGq by
Lemma A.1. Replacing A by AGq ®ag A if necessary, we may thus assume
that Ag is a local ring and q is the maximal ideal of AG.

Let A be the completion of A with respect to the qA-adic topology. Since
A is a finite AG-algebra^we have A AG (g)AC A. On the other hand, we
have A

• Since AG is a flat AG-algebra, we have AG (AG (g)Ac A)G
/

by Lemma A.1. So we have AG (IlL)G- Obviously (üL)0 (Apl°L

Therefore (Ap)G'y — AG.
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LEMMA A.3. Let A be a noetherian local ring, let f (i 1,*.. n) be

some ideals of A, and let Ki be the kernel of the canonical homomorphism
A —* A/f. If I — Ii " - In, then the kernel of A —+ A/I is K\-Kn.

Proof Since A is noetherian, we have ker(A —>• A/If) % I{A,
that is Ki fA. Similarly we have ker(A —» A/1) IA I\ •• InA. So

ker(A -4 A/I) Kl-Kn.

Let T be a k-scheme. Consider the Cartesian square

Km x T $ Xm

•I 1

T # spec(k)

We have the following

LEMMA A.4. Let s: T —» Xm x T be a section of q. Then s is a closed

immersion and the closed subscheme D defined by s is a relative effective
Cartier divisor on Xm xT/T.

Proof Since qs-id is a closed immersion and since q is separated, s

is also a closed immersion. The closed subscheme D defined by s is flat
because qs=\d. Let T be the sheaf of öXmXT~ideals defining D. We have an

exact sequence

0 —> I —> GXm xt OD —>• 0

For any t G T, since Öd is Oj flat, the following sequence is exact:

0 —> T (g>oT W) 0Xm xt ®oT k(t) -> Op, 0

where Dt is the fiber of D -4 T at t. Hence kit) is the ideal defining
the closed subscheme Dt of q~l(t) =Xm. Obviously Dt defines a divisor of
Xm. So for every point x G the ideal lx®oTk{t) of 0XmxT,x®orff(t)
is generated by an element which is not a zero divisor. By Nakayama's
lemma, the ideal Tx of öXm x t.x is generated by one element whose image
in öXm XT,x ®oTj Kt) is not a zero divisor. By Lemma 2.3, D is a relative
effective Cartier divisor.
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Consider the sections

: (X - 5)" -t Xm x (X - S)T (Pi,..., Pn) ^ (Ph PY,..., Pn).

Denote the relative effective Cartier divisors defined by Sj also by S{, and let
D s\ + - • • + sn. The relative effective Cartier divisor D can also be regarded

as a closed subscheme of Xm x (X — S)n. The n-th symmetric group &n acts

on (X — S)'1 by permuting the factors. It acts on Xm x (X — S)n through its

action on the second factor. Obviously D is stable under this action. Let V
be the quotient of D by &n.

Proposition A.5.

(a) The quotient of Xm x (X — S)n by &n is Xm x (X — Sfn).

(b) The closed immersion D —* Xm x (X — S)n induces a closed immersion
V ^ Xm x (X - Sf2) and V is a relative effective Cartier divisor on
(Xm x (X — S)(n))/(X — Sfn\ Moreover D is the pull-back of V.

Proof (a) We have a Cartesian square

Xm x (X - 5)" f Xm x (X - S)W

(X - ST > (x -
The morphism Xmx(X-S)(n) -> (X-S)(n)is flat since it is obtained from the
flat morphism Xm -» spec® through the base extension (Z-5)(,!) -> spec(fc).
Our assertion then follows directly from Lemma A.l.

(b) Consider the commutative diagram

D > V

I 1

Xm x (X - ST Xm x (X - 5)(n)

i i
(x - sy > (x - s)W

One can easily show that V - Xm x (X-S)("> is a finite morphism and induces
a homeomorphism of V with a closed subset of Xm x (X-S){n). We are going
to show that for any point y e V,thehomomorphism -> Ov y
is surjective and the homomorphism ö(x_s)Wj Ov.s is flat, where t is
the image of y in (X - 5)("). If this is done, then V Xm x (X - S)(n)
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is a closed immersion and V —> (X — S)^n) is flat. Obviously the fibers of
V -+ (X - S)in) are effective divisors. As in the proof of Lemma A.4, one

can then use Nakayama's lemma and Lemma 2.3 to show that V is a relative
effective Cartier divisor.

One can show that

Ov,y0Viy ®0^x(x_S)(„)i? <5XmX(X_S)(,),y

Note that 0XmX(x-s)^j a faithfully flat 0XmX(x-syn\y-algebra. Thus to
show that 0Xmx(x-s)w,y ^v,y is surjective, it is enough to show that

0Xm X(x~synKj is surjective; and to show that OiX_sy")lt is

flat, it is enough to show that Ö(x-s)w,t ~* &T>,y is flat.

Assume t n\P\ H bw/P/ G (X — 5)(,7), where the Pt are distinct points
of X — S, rii > 0 and J2ni n- Then y (Pl{), t) G Xm x (X — for

some to G {1. Let t7 (Pi,..., P\,,.., P/,..., Pf) G (X — S)n, where
the first ni components of t' are Pi, and the last ni components are Pi.
The point t' is a point in (X — S)n lying over t G (X — S)(n). Let y7 be the

point (Pi0,tr) in Xm x (X — S)n. It lies over y. Note that y7 is also a point
in D. With respect to the actions of 6n on (X — S)n, on Xm x (X — S)n, and

on Z), the decomposition groups at t' G (X — S)n, at y7 G Xm x (X — S)n, and

at y7 G D are all 6ni x • • • x @W/. We have

— k[[x 11S ,Xini ,X/1, ,X/nJ]

and the decomposition group 6ni x • • • x 6n/ acts on ü(*-s)v by permuting

x/i,... for each L We have

x(x—s)n y — k[[v,xn,..., v/i,... ,x/n/]],

and the decomposition group &ni x • • • x 6n/ acts on by fixing
x and permuting xn,..., for each z.

For each i G {n\ + • • • + n/0_i + 1,,., wi + • • • + w/0}', the section

(X - sr xm x (X - sy\ (Pi,... ,P„) ^ (PMPU... ,P„)

induces a homomorphism

öxmx(x-5)fl,y — 0(x-s)ny •

Through the isomorphism

0Xm X(x-s)ny — k[[xtx'h, ,X]n,,... ,x/i5... ,x/„J]

and the isomorphism
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0(X-S)"J> —- ^[[A] 1 5 • • • j X\tl\ • • • 5-^/lî • * • 3-^/»/]] 5

this homomorphism induced by Sj is

k\|.v. a'i ;.... ,xhu,... ,xn,... -+ 11,... • ,*/*]],

X I—> X/w-, Xq.0 I—> Xa/3 (a 1, • • • 1, 1) - •

where je {1,... is uniquely determined by «!+••• + n/0-i +j '•

The kernel of this homomorphism is the ideal (x — xiaj). By Lemma A.3, the

kernel of the homomorphism Oxmx(x-syy * is identified with the

/ n'o \
ideal Yl(x-Mkj)) through the isomorphism

7=1
J

Oxm x(x-s)".y — k\\x: x\i...., X[,n,..., xn, • • • X[nt}].

Hence

0Dy Ç*k[[X,Xu,...,Xln„...,Xiu..., / (]> " -L/)) '

' 7=1

and the decomposition group x • • • x ©/7/ acts on Ony by fixing x
and permuting x/i,... for each L Let cr7|,..., ainj be the elementary

symmetric functions in x/i,... fXjUj. By Lemma A.2, we have

/ f
ni°

\
Ov,y A[[X. <7ii, ,<J.,(7/1, CT/,,,]] / ~ X'a/)J '

' 7=1

x(X—S)*'0,}' — Mt-T cru,..., OTÄ1 CT/1, CT//J,]],

0(X-SY"Kt — ^[[^lli ••;cr In 1 î • • • • al\ 7 • • • 5

1
•

Now it is easy to see that 0XmX(x-sy,y @v,y is surjective and

öix_s)(")j — %,) is flat. This proves 22 is a relative effective Cartier divisor.

We also have

ODaJ 0(X-S)".t' •

This implies that D V (A — 5)", that is, Z) is the pull-back of V.
This completes the proof of the proposition.

The relative effective Cartier divisor V is the universal relative effective
Cartier divisor.
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LEMMA A.6. Let T be a k-scheme and let si : T —* Xm xT (i =* 1,..., n)
be some sections of the projection q \ Xm xT —>• T. Assume the images of St lie

in (Xm-Q) xT. Then there is a unique morphism of schemes f: T —» (X — Sfn^

such that the pull-back by id x f of the universal relative effective Cartier
divisor V to Xm x T is s\ 4 • • 4 sn.

Proof Let p: Xm x T —> Xm be the projection. The morphisms

psi : T «—* Xm induce (ps\,... ,psn) : T X*f. Since the images of 57 lie
in (Xm — 0x7, we actually get a morphism (p^i,... ,psn): T —» (X — S)n.

Composing with the canonical morphism (.X — S)n —> (X — Sfn), we get

/: T —» (A — S)(n) so that the pull-back of V by id xf is s\ H— - 4-sn. This

proves the existence of /.
To prove the uniqueness of /, we first note that /: T (X — S)(n) is

uniquely determined as a map on the underlying topological space. Indeed,

for every point t G 7\ /(0 is necessarily the point in (X — corresponding
to the effective divisor (sH f sn)t on q~l(t) ~ Xm. To prove / is unique
as a morphism of schemes, it is enough to prove that the homomorphism
on local rings 0{X-s)^j\t) ör.j induced by / is uniquely determined. It
suffices to prove that 0(X-sy^j(t) &T,t is uniquely determined.

Consider the commutative diagram

D * V

I i
Xm X TXm X (X - S)«

1 I
T ->(X - S)(n)

where D is the closed subscheme of Xm x T corresponding to the divisor

s\ 4 • • • 4 sn. Let A &T,t, let z G Z) be a point lying over t e T, and let

y G V be the image of z. We have öXm xi\z — A[[x]].
Without loss of generality, assume

psiit) • • • =psn](t) Pi

psni + i(t) • • • psn]+n2(f) P2

P$n \ -4 |-n/_i + l(0 ' )-w/(0 Z5/ j

where n/ > 0 (/ l3..., /), «H f nj n, and the 7/ are distinct points
in X — 5. Then we have z (Pi{), 0 e Xm x T for some /0 C {1,.
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For each / G {/?j + • • • + /z/()_i + 1 n\ + • • • + ///„}, the section .v,

induces a homomorphism ÖXmxT.z Or.t* i-e., 4[|.v]| -+ A. Denote the

image of x under this homomorphism by aitil, where j G {1 nio} is

uniquely determined by n\ + • • • + /z/n_i +y /. Then by Lemma A.3, we
have

On.:^A\[x\] (]>-
' j= 1

Keep the notations in the proof of Proposition A.5. We have

Ôc,v k[[.\\ ancf\,u \ \ / (jpv - .v,,(/ j
' ./= i

Oxm X (X —5)"".v — ^11 <Tj;ll (71/ <7/,,, ]]

öix-sy^ßt) — k[[cr\ j ai„, an ain ]]

We have a commutative diagram

(5p.v

ÖYm xT.z v Ov : (X ~ S )"

1

- Ô,Y-.vr'./m

It is isomorphic to

4[M]/ (n (.v - flW)) A[[.v. a,, a,,,, a„ ][/ ft' (.v -j 1

j=\

Ï

'/J/ J

* A'[[.v.an cri,,, a/I at,

Î
A * k[[aa„„ <7,, a,,,]]
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niQ

In order for this last diagram to commute, it is necessary that U(x-xid)
j= 1

n'o

be mapped to Yl(x ~ akj) under the homomorphism
j= i

k[[x,a11,... ,£7/1,... ,crn/]] A[[x]].

So the image of a/()/ under the homomorphism

fc[I>U3..., crin,,..., a/i,..., (j/n/]] —> A

is necessarily the value at (A%i,..., aim.Q) of aioj considered as a function

on Anio. We see that this is true for any indices iç> and j if we
let z go over the points in D above t. Therefore the homomorphism
k[[crh j.. •, (J\n\! • • •, er/1,..., aini]] —» A is uniquely determined, that is, the

homomorphism Ö(X-s)w /(/) is uniquely determined. This concludes

the proof of the lemma.

LEMMA A.7. Let T be a k-scheme and let D be a relative effective
Cartier divisor on (Xm x T)/T supported on (Am — Q) x T with degree n.
Then there exist a flat morphism T' —* T and sections Sj : Tf —>• Xm x T'
(i 1,.. n) of the projection Xm x T' —> T' such that the pull-back of D
to Xm x T' is equal to s\ + • - * + sn.

Proof By the definition of relative effective Cartier divisors, D is flat

over T. On the other hand, D —> T is proper and has finite fibers. So D is

finite over T by [EGA] III, §4.4.2. Take T\ D. Then we have a finite flat

morphism T\ —» T. Consider the commutative diagram

D x jTx-) D

4 4
X T\ XmxT > Xm

4 4 i
D — T\ —-—» T > spec(k)

Let A: D—>DxtD DxtT\ be the diagonal map. It is a closed immersion

since the morphism qi is separated. Take si i!A. This is a section of cf.
Hence it defines a relative effective Cartier divisor on (Xm x T\)/T\. The

pull-back D\ of the relative effective Cartier divisor D to Xm x T\ is the

closed subscheme defined by i'. Let 1D] and ls be the ideal sheaves of the
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closed subschemes defined by i' and si, respectively. Since s\ factors through

i', we have ZDx C Ts. Hence Z^i — a is a relative effective Cartier divisor on

(Xm x T\)/T\ by Lemma 2.2(b), that is, there exists a relative effective Cartier

divisor Df such that D\ s\ -f TV. Now we take 7? D\ We then have

a finite flat morphism 77 —* T\, a section 5*2 : 72 —» x 7? of the projection

V x Ti —> 73, and a relative effective Cartier divisor TV on (V x 73)/73
such that the pull-back of TV to Xm x T2 is equal to 52 + ZV. Then we
take T3 D2 * In this way we get finite flat morphisms 7) —> 7}_j
(7 1.... .72), sections 57: 7} —* V x 7/, such that the pull-back of 7) to

x Tn is equal to s\ + • • • + sn, where the 57 denote the relative effective
Cartier divisors on (Xm x Tn)/Tn induced by the sections Sj. This proves our
lemma.

Finally we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. By Lemma A.7, there exist a finite flat morphism
rr.T'-^T and sections sp. T —>• Xm x T (/ 1 n) of the projection
Xm x T' — V such that the pull-back 7GD of D to x T is equal to
#1 + • • • + sn. By Lemma A.6, there exists a unique morphism of schemes

f'.T (X — Sfn) such that the pull-back f*V of the universal relative
effective Cartier divisor V to XmxTf is h sn. Let p\.p2: V xTTf —* T'
be the projections. We have

(/Pi) ÇD) P\f'' 77 pj ($iT- • -+sn) p\i\*D — pfïï^D (f'pffÇD).
that is, {f'pxTfD) (fp2y(V). By Lemma A.6 we have fp\ f'p2.
By the theory of descent, ([SGA1] VIII, Theorem 5.2), there exists a unique
morphism of schemes/: T (Xm-Q)in) such that f =fn, and the pull-back
of V to Vm x T is D.
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