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A FREE GROUP ACTING ON Z2 WITHOUT FIXED POINTS

by Satô Kenzi

Abstract. The group of all orientation-preserving affine transformations of the

plane has a non-abelian free subgroup which stabilizes Z2 and which acts on Z
without non-trivial fixed points.

Introduction

Let G be a group acting on a non-empty set X. The following two
conditions are known to be equivalent (see [D], and Theorems 4.5 and 4.8

in [W]) :

(a) there exists a non-abelian free subgroup of G whose action on X is

locally commutative ;

(b) there exists a G-paradoxical decomposition of X using 4 pieces, namely
a partition of X in parts Pq, P\, P2, P3 and elements ao, oq, ot2> a3
in G such that

X PQ U P\ UP2LJP3 — 0) U ai(Pi) (X2ÇP2) LI U3CP3).

Moreover, in the situation of (b), it can be shown that the subgroup of G

generated by ao~la\ and a2~la3 is free of rank 2. (The symbol U denotes

disjoint union. Recall that an action of a group H on X is locally commutative
if the stabilizer {h G H \ h(x) x} is commutative for all x 6 X, i.e. if two
elements of H which have a common fixed point commute; trivial examples
of locally commutative actions are actions without non-trivial fixed points, for
which {he H \ h(x) x} is reduced to {1} for all x G X.)
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For example, the group SÛ3(R) of rotations of the unit sphere S2 has

such a free subgroup : this was discovered by F. Hausdorff (see, e.g., [S],
or Theorem 2.1 in [W]). It implies the following result, for which we refer
to [BT] and Theorem 3.11 in [W] ; we denote by SGs(R) the group of all

orientation-preserving isometries of R3.

The Banach-Tarski Paradox. Any two bounded subsets U and V of
the 3 -dimensional Euclidean space R3 with non-empty interiors are SG3(R)-
equidecomposable. In other words, one can partition U into a finite number

of pieces and reconstruct V from the same number of respectively SG3(R)-

congruent pieces.

The Banach-Tarski paradox holds similarly for higher dimensional Euclidean

spaces, but not for R and R2 ; the reason is that neither SGi(R) nor
SG2(R), which are soluble groups, contain free subgroups of rank 2. (There
are other known examples of free groups acting without non-trivial fixed

points on familiar spaces. See e.g., [B], [DS], and [S2]. The proof of the

Banach-Tarski paradox requires the axiom of choice, because the proof of the

equivalence of conditions (a) and (b) requires it. But similar paradoxes hold
for rational spheres of the form (y^S2) HQ3, as can be shown without the

axiom of choice from the countability of rational spheres. See [SI], and [S3].)
In dimension 2, von Neumann has exhibited a Banach-Tarski paradox with
respect to the group SA2(R) of affine transformations of R2 that preserve
area and orientation ([V], and Theorem 7.3 of [W]). The following problem
was raised in [MW] ; see also the discussion which follows Proposition 7.1

in [W].

PROBLEM ([MW], [W]). Does SA2(R) contain a free subgroup of rank 2

whose action on R2 is locally commutative

Indeed, these authors asked more specifically if the group generated by

satisfies the requirements of the problem. We observe here that the answer is

"no", because both a~2ß2 and a~lß~laß fix the origin.
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Though we cannot solve the above problem, the purpose of this note is

to show that, if one replaces R2 by Z2, the new problem has a positive

solution. In fact, we will prove the following result, which shows somewhat

more, namely that the action on Z2 may be an action without non-trivial fixed

points, rather than only locally commutative. We denote by SA2(Z) the group

of all transformations x ^ Ax + a of Z2, with A G SL2(Z) and a G Z2.

Theorem. The group SA2(Z) has a free subgroup F2 of rank 2 which

acts on Z2 without non-trivial fixed points, namely the subgroup generated

and

x\ 94 39\ fx\ (3
y) " 147 61 J (J + \2

The theorem implies the existence of a partition of Z2 into three pieces

P, Q and R such that the six pieces P, Q, R, P U Q, QU R, RUP are

pairwise F2-congruent, without the axiom of choice ([SO], and Corollary 4.12

in [W]).
As observed in the discussion which follows Proposition 7.1 in [W], it is

known that the above theorem does not carry over to R2 ; more precisely, it
is known that a subgroup of SA2(R) which acts on R2 without non-trivial
fixed points is soluble, and consequently does not contain non-commutative
free subgroups.

Proof of the main result

Recall that a matrix in SL2(Z) is hyperbolic if the absolute value of its
trace is strictly larger than 2, or equivalently if it has an eigenvalue of absolute
value strictly larger than 1.

LEMMA 0. The subgroup of §L2(7j) generated by

G ï) - (,« ")
is free of rank 2 and all its elements distinct from the identity are hyperbolic.
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Proof. It is well-known that the subgroup of SL2(Z) generated by

' o md (2 \
is free of rank 2, and that all its elements distinct from the identity are

hyperbolic. (See Appendix B in [K], [Ma], [MW], [N], or the proof of
Theorem 6.8 in [W].) The lemma follows, because

7 3\ (\ l\/5 2\ / 94 39 \ (\ l\2 / 5 2N
2

9 4 y
—

1 2J\2 ljan 147 61J — f i 2 J \2 1

(see for example Exercice 12 of Section 1.4 in [MKS]).

The following is elementary linear algebra.

LEMMA 1. For A G SL2(R) with trA 2 and for a G R2, the affine

transformation
R2 ^ R2

x ^ Ax+a
has a unique fixed point.

Our preparations are complete.

Proof of the main theorem. The two transformations and p of our
main result generate a group which is free of rank 2, by Lemma 0. As both
these transformations fix the point

2/3 \
-5/3 J

eR2,

each element of the group they generate fix the same point. As this point is

not in Z2, the theorem follows by Lemma 1.

Remark. Let a, ß G SA2(Z) be as in the introduction. Then we can

prove the main theorem by using the group generated by aß~laß~2a and

ßa~lßa~2ß, because the transformations

:(;)-(II^V"17
and

10 17 J \y J V-13

ßa-ßa-'ß: I I I "( 22 u)0 + (ln



A FREE GROUP ACTING ON Z2 WITHOUT FIXED POINTS 193

have a common fixed point

generated by

j in R2 and the subgroup of SL2(Z)
1/2 J

13 22 \ / 17 10

10 17 V22 13

is free of rank 2 and all its elements distinct from the identity are hyperbolic.

See [K] and the following calculations :

13 22

10 17

17 10

22 13

tu(tu l)3(tu)2tu ltu,

: tu~\tu)3(tu~l)2tutu~{

where
0 -1\ j (0 -1
1 o

and "=ll 1

with (t. u)/{±1} Z2 * Z3.

The referee suggested to the author that the following could be shown

(without the axiom of choice).

COROLLARY. There exists a subset E\ of Z2 such that, for every finite
subset F of Z2, the symmetric difference of E\ and F is congruent to E\

relative to the group SA2(Z).

Proof This is a consequence of our main result and of Theorem 2 in [My]
(5 Z2, G (C, V). M {Cr/, CV, CV. • • •}, F {F Ç Z2 I F is finite}
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