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6. APPLICATIONS

LEMMA 13. Let M be a closed hyperbolic surface of genus g which has
29 — 2 simple closed geodesics uy,...,uyg_o which all intersect in the same
point Q and intersect in no other point. Then M has simple closed curves
Urg—1 and upg, passing through Q, such that the curves u; intersect in no
other point than Q, i =1,...,2g9. Moreover, u,,_1 and uy can be chosen

such that
2g
M\ U Uu;
i=1

is the interior of a canonical polygon P(g).

Proof. Cut M along u;, the result is a hyperbolic surface M; with
boundary and genus g — 1, the boundary consists of two simple closed
geodesics v; and w;. Cut M; along u,, the result is a hyperbolic surface
M, with one boundary component v, and genus g — 1. Now cut M along
all 2g — 2 simple closed geodesics uy,...,uz,—>. By induction, the result 1s
a hyperbolic surface M,,_, with one boundary component v and genus 1.
More precisely, the boundary v is piecewise geodesic with 4g — 4 pieces
and we may assume that the notation is chosen such that these pieces
appear on v in the order (the pieces are called like the corresponding closed
CUrves) uy, Uy, ..., Uzg—2, Ui, Uz, ..., Urg_o (note that closed geodesics intersect
transversally). Denote by S and S’ the two copies of Q on v between u
and wupqy—o. Let upy, 1 be a simple geodesic in M>,_, which joins § and S’
such that up,_; is not homotopic to a part of v. Cut M, along uy,_.
The result is a hyperbolic surface M,,_; of genus zero with two boundary
components w and w’ which both consist of 2g — 1 geodesic pieces in the
order uj,us,...,usq—2,uz4—1. Denote by R and R’ the copies of Q between
u; and upy,—; on w and w’, respectively. Let up, be a simple geodesic
in M, which joins R and R', uy, can be chosen such that when we
cut M,y along uy,, then we obtain the interior of a canonical polygon as
desired. [

DEFINITION. A hyperelliptic surface is a closed hyperbolic surface of
genus ¢ which has an isometry ¢ with ¢* = id and with exactly 2g + 2
fixed points.

In [14], the equivalence of (i) and (i1) of the following theorem was first
proved. With the approach chosen here, we can give a third equivalence and
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a different proof.

THEOREM 14. Let M be a closed hyperbolic surface M of genus g. Then
the following conditions are equivalent.

(i) M is hyperelliptic.
(ii) M has a set of at least 2g—2 simple closed geodesics which all intersect
in the same point and intersect in no other point.

(iii) M has a corresponding canonical polygon with equal opposite angles
(Oéi = Q2g+i» [ = 1,,29)

Proof. 1 shall prove (i) = (i) = (ii1) = (1).

Let M be hyperelliptic. Let R;, i =1,...,2g + 2, be the fixed points of
a hyperelliptic involution ¢. Let ¢; be a simple geodesic segment from R;
to R,. Then ¢; Ug(c;) is a simple closed geodesic u; since ¢? = id. It also
follows that on uy, there are only two fixed points of ¢ and that M; = M\ u,
is connected. Therefore, we can choose a simple geodesic segment ¢, from
R; to R; which intersects u; only in R;. By the same argument as above,
c2Ud(cy) is a simple closed geodesic, My = M\ (u; Uuy) is connected and on
u; Uuy, there are only three fixed points of ¢. Continuing this construction

we can find simple closed geodesics ui,...,uyq—> which all intersect in R,
and in no other point. This proves (i) = (ii).
Q4g
Q4g—2
Org—2
Q2g
FIGURE 6

The partition of a canonical polygon P(g) into two (2g — 1)-gons and two quadrilaterals

Assume now that M has 2g — 2 simple closed geodesics uy, ... , UDg—2
which all intersect in the same point Q and intersect in no other point. By
Lemma 13 we then can find simple closed curves Urg—1 and up, such that
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2g
M\ U U;
i=1

1s the interior of a canonical polygon P(g) with the usual notation. For
i=1,...,4g, let {Q;} =a;Na;r;. In P(g) let d; be the geodesic segment
from Q44 to Ory—2, dp the geodesic segment from O, to Qs4g—2, and d the
geodesic segment from Oy, to Qu,, compare Figure 6. Then P(g)\ (d, Ud,Ud)
has four connected components, two quadrilaterals W, having 4 and dj,
J = 1,2, among the sides and two (2g — 1)-gons V; having d; among the
sides, j = 1,2. Since u;, i = 1,...,2g9 — 2, are simple closed geodesics, it
follows that «; = ajyp4 for i =1,...,2¢g — 3. This implies that V; and V;
are isometric and that d; and d, have the same length. Therefore, W; and
W, are quadrilaterals with equal lengths of the four sides. Fix now W; and
try to vary W, such that the lengths of the sides remain invariant and so that
property (V) for canonical polygons holds. This is certainly the case if W,
and W, are isometric. But then Corollary 8 implies that this is the unique
possibility. Therefore, W; and W, must be isometric and hence «o; = ;g4
for all i=1,...,2g, which proves (ii) = (ii1).

Now assume that (ii1) holds. Let d be the geodesic segment from (4 to
Qsq. Then d separates P(g) into two isometric (2g + 1)-gons and the -
rotation around the centre C of d induces an isometry ¢ of M with ¢? = id.
The fixed points of ¢ are C, the point O corresponding to the vertices of
P(g) as well as the centres of the sides a;, i =1,...,2¢g. Therefore, ¢ 1s a
hyperelliptic involution which proves (ii1) = (1). L]

COROLLARY 15. All closed hyperbolic surfaces of genus 2 are hyperel-
liptic.

Proof. All closed hyperbolic surfaces have two simple closed geodesics
which intersect in a unique point. The corollary follows by Theorem 14. []

DEFINITION. Let M, be a closed hyperbolic surface in T,. For every
M € T, fix a homeomorphism ¢, homotopic to the identity, from My to M
(dy exists since closed surfaces of the same genus are homeomorphic). Let
u be a simple closed geodesic in My. Then, in the homotopy class of @y (u)
there exists a unique simple closed geodesic which is denoted by ®,(u). The
function

L(u): Ty — R

which associates to M the length of ®,,(u) is called a geodesic length function.
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REMARK. Itis well known that T, can be parametrized by a finite number
of geodesic length functions, see for example [12], [13] where it is shown
that T, can be parametrized by 6g — 5 geodesic length functions.

THEOREM 16. The Teichmiiller space T, for g =2 can be parametrized
by 7 (suitably chosen) geodesic length functions L(uy),...,L(u7), taken
as homogeneous parameters (which means that L(u)/L(u7), . .., L(us)/L(u7)
gives a parametrization of T, ).

Proof. Let P(2) be a canonical polygon corresponding to a closed
hyperbolic surface My of genus 2. As usual let O; =aq;Nai1, i1=1,...,8,
where the @; are the sides of P(2). Let b; be the geodesic segment (in P(2))
between Q; and Q;i4, i = 1,...,4. By Corollary 15, M, is hyperelliptic,
therefore (compare Theorem 14) b; corresponds to a simple closed geodesic
in My, denoted by B;, i =1,...,4. It also follows by Theorem 14 that g;
corresponds to a simple closed geodesic in My, denoted by A;, i=1,...,4.

Os O

Os o

FIGURE 7

A triangulation of a canonical polygon P(g) for g =2

I now prove that the 7 length functions, given by the simple closed
geodesics A;, i =1,2,3, B;, i=1,...,4, taken as homogeneous parameters,
give a parametrization of T5. In order to do this, it is enough (by Theorem 11
and Corollary 12) to show that P(2) is uniquely determined by the lengths
of a;, i=1,2,3, b;, i=1,...,4, taken as homogeneous parameters (in the
sequel I shall refer to these lengths calling them “the seven lengths™). This can
be done analogously as in the proof of Theorem 11. The geodesic segments
bi, i=1,...,4, intersect in a point C, the “centre” of P(2), and they separate




186 P. SCHMUTZ SCHALLER

P(2) into 8 triangles D; so that a; is a side of D;, j=1,...,8, compare
Figure 7. Since M is hyperelliptic, D; and Dj;4 are isometric, j = 1,...,4.
Denote by ¢; the angle of D; in the vertex C, i = 1,...,4. The seven lengths
determine the triangles D;, i = 1,2,3, as well as two sides and the angle 64
of D4 by the condition

(6) A=) G=m,

so they determine also Dy4. This shows that the seven lengths determine P(2).
Multiply the seven lengths by a positive real ¢ and assume that the seven
new lengths also determine a canonical polygon P,(2). If ¢+ > 1, then ¢;,
i =1,2,3, are smaller in P,(2) than in P(2) by Lemma 9, therefore, by (6),
04 1s larger in P;(2) than in P(2). It follows by Lemma 7 that the sum of
the two other angles of D, is smaller in P,(2) than in P(2). Since all angles
in D;, i =1,2,3, are smaller in P;(2) than in P(2) by Lemma 9, it follows

that
4
Do
i=1

is smaller in P,(2) than in P(2). But this contradicts condition (II) of canonical
polygons. An analogous contradiction follows if # < 1 proving thus that 7 = 1
and therefore the theorem. [

REMARK. Theorem 16 1is new. It is well known that 6g—6 length functions
can never parametrize T, so that the situation of Theorem 16 is the best we
can expect. It is not known whether 6g — 5 geodesic length functions, taken
as homogeneous parameters, can parametrize 1, for g > 3.

REFERENCES

[1] BEARDON, A.F. The Geometry of Discrete Groups. Springer, 1983.

[2] BUSER, P. Geometry and Spectra of Compact Riemann Surfaces. Birkhduser,
Boston, 1992.

[3] COLDEWEY, H.-D. Kanonische Polygone endlich erzeugter Fuchsscher Gruppen.
Dissertation, Bochum, 1971.

[4] FORD, L. Automorphic Functions. Chelsea, New York, 1929.

[5] IVERSEN, B. Hyperbolic Geometry. Cambridge University Press, 1992.
[6] JosT, J. Compact Riemann Surfaces. Springer, 1997.

[71 KATOK, S. Fuchsian Groups. The University of Chicago Press, 1992.

J



	6. Applications

