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condition (V) of canonical polygons are equivalent to the condition that ux

and U2 are simple closed geodesies in M.

Remark. By abuse of notation a side of a polygon will often be identified

with its length.

The following theorem is standard (for a proof see for example [1], [2]).

THEOREM 6. Let T be a triangle with angles a, /3,7 and sides of length

a,b,c with the the notation of Figure 3. Then

sinh a sinh b sinh c

sin a sin/3 sin7
(ii) cosh c cosh a cosh b — sinh a sinh b cos 7 ;

(iii) cos 7 — cos a cos ß + sin a sin ß cosh c

LEMMA 7. Let T be a triangle with the notation of Figure 3. Let T' be

a triangle with sides of length a' ,b', c' and angles af, ß', 7'. Let a a' and
b — b'. Then

Proof The first equivalence is a consequence of Theorem 6 (ii).
Let Z be the centre of the side c and let u be the geodesic segment, of

length d/2 say, between Z and the vertex C of T. The segment u separates
T into two triangles (compare Figure 4). Applying Theorem 6 (ii) to them,
we obtain

4. Trigonometry

c

Figure 3

The notation for a triangle

c > c 7' > 7 öl + ß' < a + ß

cosh a cosh(c/2) cosh(J/2) - sinh(c/2) sinh(<7/2) cos <5
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Figure 4

The triangle T (thick lines) is half of this quadrilateral

and

cosh b — cosh(c/2) cosh(d/2) + sinh(c/2) sinh(<i/2) cos <5

for an angle 6. This implies

(1) cosh a + coshZ? 2 cosh(u/2) cosh(<7/2).

Let T be the triangle with sides of length a^b^d (compare Figure 4). Then
the angles of T are a + /?, 71,72 with 7 72 + 72. Now if the length of c

grows, then the length of d diminishes (by (1)), therefore, applying the first
equivalence of the lemma to the triangle T, the angle a + ß diminishes and

the second equivalence of the lemma follows.

COROLLARY 8. Let Q and Q1 be two quadrilaterals with the same lengths

of the four sides. Let and a', ff.. y/. 6' be the four angles in Q and

Q', respectively, in the natural order a and 7 are opposite). Then

a + 7 > öl + <=> ß + 6 < ß' + 6'.

Proof Clear by Lemma 7 (draw a diagonal in Q and in Q').

LEMMA 9. Let T be a triangle with the notation of Figure 3. Let T(t)
be a triangle with sides of length taßbfc and angles OLUßt, 7,.

(i) If t > 1, then at < a, ßt < /?, yt < 7-

(ii) For t00, the three angles at,ßt, yt converge to zero.

Proof, (i) I prove yt < 7, the two other inequalities follow analogously.

By Theorem 6 (ii) it has to be shown that

cosh ta cosh tb — cosh tc cosh a cosh b — cosh c >0.(2)
sinh ta sinh tb sinhß sinh/?
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By symmetry we can assume that a > b. Consider the left hand side of (2)

as a function / /(c) of c with fixed a, b, t. A calculation yields

(3) f(a + b) — f{a — b) 0.

Further, f'(c) 0 implies
t sinh tc sinh ta sinh tb

sinhc sinh a sinh/?

and by the convexity of the function sinh we conclude that f'(c) has only

one zero. Since t > 1, it follows (by the definition of /) that

/(c) —» —oo for c —¥• Too

Therefore, by (3), /(c) > 0 for a — b < c < a + b, which is the triangle
inequality, and < 7 follows.

(ii) Assume without restriction that a < b < c. It then follows by
Theorem 6(i) that a < ß < 7. This implies by Theorem 6 (iii) that at
and ßt converge to zero for t —* 00. We compare the triangle T(t) with the

triangle T'(t) which has two sides of length t(a-\-b)/2 and one side of length
ta, Denote by 7/ the angle in T'it) which is opposite to the side of length
tc. By a similar (but easier) argument as in part (i) it follows that j't > 7,
for all t > 1. It is therefore sufficient to prove

(4) 7r; —» 0, for t —» 00

By Theorem 6(i) we have

7/ sinh/c/2)
sin — —

2 sinh(t(a + b)/2)
This implies (4) since c/2 < (a + b)/2 (by the triangle inequality).

COROLLARY 10. Let Q be a quadrilateral with sides of length a^b^c^d
and angles a,ß,j,6 (so that a and c are opposite sides and a and 7 are
opposite angles). Let Q(t) be a quadrilateral with sides of length ta, tb, tc, td
and angles at,ßt,jt,6t (the notation is analogous to that of Q).

(f) If t > 1, then at least two opposite angles are smaller in Q(t) than
in Q.

(ii) For every e > 0, there exists a real T(e) such that, for every t > T(e),
at + It < e or ßt + 6t < e.

Proof Let e be the length of a diagonal of Q. Construct the quadrilateral
Q'(t) with a diagonal of length te and sides of length ta, tb, tc, td. By Lemma 9
all four angles of Q'(t) are smaller than the corresponding angles in Q
and moreover converge to zero if t 00. The corollary now follows by
Corollary 8
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