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canonical polygons. Section 4 provides the necessary material from hyperbolic
trigonometry, it contains also some lemmas needed later. Section 5 contains
the proof of the main theorem and Section 6 gives some applications, mainly
concerning hyperelliptic Riemann surfaces. More precisely, I give a new proof
of a geometric characterization of hyperelliptic Riemann surfaces which first
appeared in [14] (I thank very much Feng Luo who, by his comments on
[14], has contributed to the idea of this new proof). I also show (and this is a
new result) that the Teichmiiller space T, for g =2 can be parametrized by
7 geodesic length functions, taken as homogeneous parameters. This is the
optimum parametrization of Teichmiiller space by geodesic length functions
which one can expect.

I spoke about the content of this paper in lectures of the Troisiéme Cycle
Romand de Mathématiques (Lausanne 1997); I thank the participants for their
comments.

2. HYPERBOLIC GEOMETRY AND FUCHSIAN GROUPS

The material of this section and of parts of the following section is standard,
see for example [1], [4], [5], [6], [7], [8], [15].

DEFINITION. (i) H = {z = (x,y) € C: y > 0} denotes the upper halfplane.
The hyperbolic metric on H is given by

1
dz = —(dz)g
y

where (dz)g is the standard Euclidean metric on C and y is the imaginary
part of z.

(i1) Define

a b

SL(2,R):{[C d} . ad — be = 1: a,b,c,dER}

and
PSL(2,R) = SL(2,R)/~

with A ~ B if and only if A = +B for A,B € SL(2,R). Let 5 ¢ SL(2,R).

-l
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Then the action of v on H is defined as

for z € H.

THEOREM 1. H is a complete Riemannian manifold of constant curva-
~ture —1. The geodesics in H are either Euclidean semicircles which are
orthogonal to the real axis or vertical half-lines.

THEOREM 2.

(i) PSL(2,R) = Isom™(H), the group of orientation preserving isometries
of H.

(11) Let u and v be geodesics in H, let 7 be on u and 7/ on v. Then
there exists v € PSL(2,R) with v(u) = v and v(z) = 7.

DEFINITION. For a measurable subset G C H define the volume vol(G)

dx d
vol(G):/ xzy.
G VY

as

REMARK. The volume is invariant under v € SL(2,R).

CONVENTIONS. (1) Speaking of triangles, quadrilaterals and polygons
always means that the sides are hyperbolic geodesic segments in H.

(ii) Speaking of angles in triangles, quadrilaterals and polygons always
means interior angles. ’

THEOREM 3. The volume of a polygon with angles «;, i =1,2,...,m,
m >3, is

(m—2)m — Xm:ai.
i=1

DEFINITION. A Fuchsian group 1" 1s a discrete subgroup of PSL(2, R)
where discrete means that the identity matrix is not a cluster point in I" with
respect to the topology induced by the standard topology of R*.
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THEOREM 4. Let T’ be a Fuchsian group without elliptic elements (an
element v € PSL(2,R) is elliptic if |tr(y)| < 2 where tr is the trace). Then
H/T is a complete connected orientable Riemannian manifold of dimension 2
with a metric of constant curvature —1.

DEFINITION. A hyperbolic surface is a connected orientable manifold
M = H/T as in Theorem 4 (where I' is a Fuchsian group without elliptic
elements). M is called closed if M is compact and has no boundary.

3. FUNDAMENTAL DOMAINS AND CANONICAL POLYGONS

DEFINITION (Compare Figure 2). Let g > 2 be an integer. A canonical
polygon P(g) is a polygon with 4g sides, denoted by ay,...,a4,, ordered
clockwise, and angles «; between a; and a;+;, i = 1,...,4g (indices are
taken modulo 4g¢), such that

(D) a; and a;17, have the same length, i=1,...,2¢g;
(II) the sum of the angles of P(g) is 2w ;
) O0<a;<m, i=1,...,4q;

(IV) a) = ag41;

g 29 g 2g
(V) Za2i—1 + Z Qi = Z@zi + Z Q1.
=1 i—1

i=g+l1 i=g+1

I shall speak of condition (I) (or (II) or (III) or (IV) or (V) ) referring to
this definition.

aj

ay as

as

FIGURE 2
A canonical polygon P(g) for g =2
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