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TEICHMULLER SPACE AND FUNDAMENTAL DOMAINS
OF FUCHSIAN GROUPS

by Paul SCHMUTZ SCHALLER

1. INTRODUCTION

There are a number of ways to define the Teichmiiller space of Riemann
surfaces. In this paper I treat an approach which is less common than others.
Let " be a Fuchsian group which uniformizes a closed Riemann surface of
genus g. Then a fundamental domain for I' is chosen in a canonical way,
namely as a polygon with 4¢g sides such that opposite sides are identified.
The Teichmiiller space T, of closed Riemann surfaces of genus g is then
constructed by varying these polygons.

This construction of 7, by polygons was first done by Coldewey and
Zieschang in an annex in [17], see also [18]; the construction includes the
proof that 7, is homeomorphic to R®~°. In [2], Buser gave a different,
however indirect proof. Here, I propose a new construction and a new proof
which is, in my eyes, easier and more transparent than the original one of
Coldewey and Zieschang.

The main idea is the following. Let P(g) be a canonical polygon of 4g
sides which is the fundamental domain of a Fuchsian group uniformizing
a closed Riemann surfaces of genus ¢ (the definition of P(g) will include
some technical subtleties, to be discussed in Section 3). Then “triangulate”
P(g) into 49 — 4 triangles and one quadrilateral S. This can be done in such
a way that these triangles are determined by 6g — 5 positive real numbers
(corresponding to the lengths of the sides of the triangles) with the condition
that the different triangle inequalities hold. It turns out that these 6g — 5
lengths, taken as homogeneous parameters, provide a parametrization of the
Teichmiiller space T,. Since the set of reals for which the different triangle
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FIGURE 1

On the left hand side: usual identification
On the right hand side: identification chosen in this paper

inequalities hold is open and convex, this also proves that T, is homeomorphic
to R0,

Let P be a polygon of 4g sides which is the fundamental domain for
a Fuchsian group T" uniformizing a closed Riemann surface M of genus g.
This means that we can write

M =H/T

where H 1s the upper halfplane. Usually, P 1is chosen such that the
identification of the sides of P 1is that of the polygon on the left hand
side in Figure 1. The construction described above would equally work for
these polygons. For the following reasons I prefer to choose the identification
(compare the polygon on the right hand side of Figure 1) such that opposite
sides are identified. First the sides of P correspond to simple (this means with
no selfintersections) closed curves in M and if opposite sides are identified,
then these simple closed curves intersect transversally (which is not the case
with the usual identification). Secondly, the vertices of P correspond to a
(unique) point QO in M ; with the usual identification, Q 1s completely arbitrary
while with the identification chosen here, there is a natural choice for Q in
the case of hyperelliptic Riemann surfaces, namely, as a Weierstrass point.
See Section 6 for details.

In this paper, I only treat the case of Fuchsian groups which uniformize
closed Riemann surfaces. In a straightforward way, the construction and
proof could be extended to all finitely generated Fuchsian groups. Note that
concerning the original construction and proof in [17] (mentioned above)
the corresponding generalization has been worked out by Coldewey in his
thesis [3].

The paper is structured as follows. In Section 2 the basic definitions
of hyperbolic geometry and Fuchsian groups are given. Section 3 defines the
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canonical polygons. Section 4 provides the necessary material from hyperbolic
trigonometry, it contains also some lemmas needed later. Section 5 contains
the proof of the main theorem and Section 6 gives some applications, mainly
concerning hyperelliptic Riemann surfaces. More precisely, I give a new proof
of a geometric characterization of hyperelliptic Riemann surfaces which first
appeared in [14] (I thank very much Feng Luo who, by his comments on
[14], has contributed to the idea of this new proof). I also show (and this is a
new result) that the Teichmiiller space T, for g =2 can be parametrized by
7 geodesic length functions, taken as homogeneous parameters. This is the
optimum parametrization of Teichmiiller space by geodesic length functions
which one can expect.

I spoke about the content of this paper in lectures of the Troisiéme Cycle
Romand de Mathématiques (Lausanne 1997); I thank the participants for their
comments.

2. HYPERBOLIC GEOMETRY AND FUCHSIAN GROUPS

The material of this section and of parts of the following section is standard,
see for example [1], [4], [5], [6], [7], [8], [15].

DEFINITION. (i) H = {z = (x,y) € C: y > 0} denotes the upper halfplane.
The hyperbolic metric on H is given by

1
dz = —(dz)g
y

where (dz)g is the standard Euclidean metric on C and y is the imaginary
part of z.

(i1) Define

a b

SL(2,R):{[C d} . ad — be = 1: a,b,c,dER}

and
PSL(2,R) = SL(2,R)/~

with A ~ B if and only if A = +B for A,B € SL(2,R). Let 5 ¢ SL(2,R).

-l
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Then the action of v on H is defined as

for z € H.

THEOREM 1. H is a complete Riemannian manifold of constant curva-
~ture —1. The geodesics in H are either Euclidean semicircles which are
orthogonal to the real axis or vertical half-lines.

THEOREM 2.

(i) PSL(2,R) = Isom™(H), the group of orientation preserving isometries
of H.

(11) Let u and v be geodesics in H, let 7 be on u and 7/ on v. Then
there exists v € PSL(2,R) with v(u) = v and v(z) = 7.

DEFINITION. For a measurable subset G C H define the volume vol(G)

dx d
vol(G):/ xzy.
G VY

as

REMARK. The volume is invariant under v € SL(2,R).

CONVENTIONS. (1) Speaking of triangles, quadrilaterals and polygons
always means that the sides are hyperbolic geodesic segments in H.

(ii) Speaking of angles in triangles, quadrilaterals and polygons always
means interior angles. ’

THEOREM 3. The volume of a polygon with angles «;, i =1,2,...,m,
m >3, is

(m—2)m — Xm:ai.
i=1

DEFINITION. A Fuchsian group 1" 1s a discrete subgroup of PSL(2, R)
where discrete means that the identity matrix is not a cluster point in I" with
respect to the topology induced by the standard topology of R*.
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THEOREM 4. Let T’ be a Fuchsian group without elliptic elements (an
element v € PSL(2,R) is elliptic if |tr(y)| < 2 where tr is the trace). Then
H/T is a complete connected orientable Riemannian manifold of dimension 2
with a metric of constant curvature —1.

DEFINITION. A hyperbolic surface is a connected orientable manifold
M = H/T as in Theorem 4 (where I' is a Fuchsian group without elliptic
elements). M is called closed if M is compact and has no boundary.

3. FUNDAMENTAL DOMAINS AND CANONICAL POLYGONS

DEFINITION (Compare Figure 2). Let g > 2 be an integer. A canonical
polygon P(g) is a polygon with 4g sides, denoted by ay,...,a4,, ordered
clockwise, and angles «; between a; and a;+;, i = 1,...,4g (indices are
taken modulo 4g¢), such that

(D) a; and a;17, have the same length, i=1,...,2¢g;
(II) the sum of the angles of P(g) is 2w ;
) O0<a;<m, i=1,...,4q;

(IV) a) = ag41;

g 29 g 2g
(V) Za2i—1 + Z Qi = Z@zi + Z Q1.
=1 i—1

i=g+l1 i=g+1

I shall speak of condition (I) (or (II) or (III) or (IV) or (V) ) referring to
this definition.

aj

ay as

as

FIGURE 2
A canonical polygon P(g) for g =2
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REMARKS. (i) Note that, by condition (II), both sides of the equation in
condition (V) equal 7.

(i1) The terminology canonical polygon is not standard, one finds different
objects called canonical polygons in the literature (see for example in [15]).

DEFINITION. Let I' be a Fuchsian group. A fundamental domain for T’
1S a measurable subset D of H such that

@ U,ery(D)=H, and

(i1) int (5) N int (7 (D)) = @ for id # v € I". Here, int(S) is the interior
of a set S and id is the unit matrix.

THEOREM 5 (Poincaré). A canonical polygon P = P(g) is the fundamental
domain of a Fuchsian group I and H/T is a closed hyperbolic surface of
genus g. The group 1" is generated by the 2g elements ~; where -y; is
defined by the conditions ~v;(P) N int(P) = @ and ~yi(a;) = ai1oq if i is odd
and Yi(ai424) = a; if 1 is even, i =1,...,2g.

REMARKS. (i) For a proof see for example Poincaré [10], Siegel [15],
Beardon [1], Iversen [S]. The theorem holds for much more general polygons.
A general proof was first given by Maskit [9] and by de Rham [11].

(i1) Traditionally, the 2g generators y; of a Fuchsian group corresponding
to a closed hyperbolic surface of genus g are chosen such that the relation

2g

H [Yaie1,72i] = id

i=1
holds where
[Vaim1,721] = Yaic1m2i (=) T ()T

With the choice made here, the relation

VY2 () T ) T ()T = id

holds. Compare the introduction for the reasons for this choice.

(iii) Let P(g) be a canonical polygon and M = H/T" be the corresponding
closed hyperbolic surface. Then the vertices of P(g) correspond to a unique
point Q in M and the side a; (as well as aygy;) of P(g) corresponds to
a simple closed curve u; in M, i = 1,...,2g. These curves all intersect
transversally in Q and intersect in no other point. Moreover, these curves are
geodesic loops based in (), this means that the curves may have an angle
# 7 in @, but outside Q, they are geodesic. Further, condition (IV) and
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condition (V) of canonical polygons are equivalent to the condition that i
and u, are simple closed geodesics in M.

4. TRIGONOMETRY

REMARK. By abuse of notation a side of a polygon will often be identified
with its length.

The following theorem is standard (for a proof see for example [1], [2]).

C

FIGURE 3

The notation for a triangle

THEOREM 6. Let T be a triangle with angles «, 3, and sides of length
a,b,c with the the notation of Figure 3. Then
.. sinha sinhb  sinhc
1) sina sin8  sinvy ’
(i1) coshc¢ = cosha coshb — sinha sinhb cosy ;

(iil) cosy = —cosa cos  + sina sin 3 coshe .

LEMMA 7. Let T be a triangle with the notation of Figure 3. Let T' be
a triangle with sides of length a',b',c' and angles o', ,~'. Let a = d' and
b="0b". Then

>ce=y >ye=ad + 8 <a+j.

Proof. The first equivalence is a consequence of Theorem 6 (i1).
Let Z be the centre of the side ¢ and let u be the geodesic segment, of
length d/2 say, between Z and the vertex C of T. The segment u separates

T into two triangles (compare Figure 4). Applying Theorem 6 (ii) to them,
we obtain

cosha = cosh(c/2) cosh(d/2) — sinh(c/2) sinh(d/2) cos §
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FIGURE 4

The triangle T (thick lines) is half of this quadrilateral

and
cosh b = cosh(c/2) cosh(d/2) + sinh(c/2) sinh(d/2) cos §

for an angle ¢. This implies
(1) cosha 4 cosh b = 2 cosh(c/2) cosh(d/2).

Let T be the triangle with sides of length a,b,d (compare Figure 4). Then
the angles of T are o+ B,7v1,v with v =~ +~v,. Now if the length of ¢
grows, then the length of d diminishes (by (1)), therefore, applying the first
equivalence of the lemma to the triangle T, the angle o« + [ diminishes and
the second equivalence of the lemma follows. [

COROLLARY 8. Let Q and Q' be two quadrilaterals with the same lengths
of the four sides. Let o, 3,7v,6 and o',3',~',6 be the four angles in Q and
Q', respectively, in the natural order (a and ~ are opposite). Then

a+y>d +y <= p+65< B +6.
Proof. Clear by Lemma 7 (draw a diagonal in Q and in Q). []

LEMMA 9. Let T be a triangle with the notation of Figure 3. Let T(t)
be a triangle with sides of length ta,tb,tc and angles oy, By, ;.
(1) If t>1, then oy <, By < B, v <.

(ii) For t — oo, the three angles o, 3;,, converge to zero.

Proof. (i) I prove -, < vy, the two other inequalities follow analogously.
By Theorem 6 (ii) it has to be shown that

coshta coshtbh — coshtc cosha coshb — coshc

2) -

sinh ta sinh tb sinh a sinh b
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By symmetry we can assume that a > b. Consider the left hand side of (2)
as a function f = f(c) of ¢ with fixed a,b,t. A calculation yields

3) fla+b)=fla—b)=0.

Further, f'(c) = 0 implies
t sinh fc sinh ta sinh tb

sinhc ~ sinha sinhb
and by the convexity of the function sinh we conclude that f’(c) has only

one zero. Since > 1, it follows (by the definition of f) that

f(c) - —oc0 for ¢ — £00.

Therefore, by (3), f(c) > 0 for a — b < ¢ < a + b, which is the triangle
inequality, and ~y; < -y follows.

(i) Assume without restriction that a < b < c¢. It then follows by
Theorem 6(i) that o« < § < ~. This implies by Theorem 6 (iii) that ¢,
and (3, converge to zero for t — oo. We compare the triangle 7'(#) with the
triangle 77(r) which has two sides of length #(a+5)/2 and one side of length
tc. Denote by v, the angle in 77(¢) which is opposite to the side of length
tc. By a similar (but easier) argument as in part (i) it follows that v/ > =,
for all + > 1. It is therefore sufficient to prove

(4) v, — 0, fort— oo.
By Theorem 6 (1) we have
¢in Y _ sinh(zc/2) |
2 sinh(t(a+ b)/2)
This implies (4) since ¢/2 < (a + b)/2 (by the triangle inequality). ]

COROLLARY 10. Let Q be a quadrilateral with sides of length a,b,c,d
and angles «, 3,7,6 (so that a and c are opposite sides and « and ~ are
opposite angles). Let Q(t) be a quadrilateral with sides of length ta,tb,tc,td
and angles a, 3,7, 6; (the notation is analogous to that of Q).

() If t > 1, then at least two opposite angles are smaller in Q(t) than
in Q.

(i1) For every € > 0, there exists a real T(€) such that, for every t > T(e),
o+ <€ or B+ 6 < e.

Proof. Let e be the length of a diagonal of Q. Construct the quadrilateral
Q'(r) with a diagonal of length te and sides of length za, th,tc,td. By Lemma 9
all four angles of Q’(r) are smaller than the corresponding angles in Q

and moreover converge to zero if + — oo. The corollary now follows by
Corollary 8 . [
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5. TEICHMULLER SPACE

DEFINITION. The space P(g) of canonical polygons contains all canonical
polygons P(g) with the topology P;(g) — P(g) if and only if the lengths of
all sides converge and all angles converge, more precisely, if and only if

al(P](g)) — al(P(g))7 [ = 17 s 7497

(where a;(P;(g)) 1s the side a; of Pj(g)) and

oi(Pi(9)) — ai(P(g)), i=1,....,4g,

(where «;(P;(g)) is the angle a; of Pj(g)).

REMARKS. (i) Note that two canonical polygons P(g) and P’(g) may
be isometric, but represent different points in P(g). They represent the same
point if and only if there is an isometry mapping the side a;(P(g)) to the side
ai(P'(g)), i=1,...,4g (and not to the side a;(P'(g)), j # i). One expresses
this fact by saying that the sides of the canonical polygons are marked.

(i1) One may calculate the dimension of P(g) in the following heuristic
way (this argument is modeled after one given in [16]). A canonical polygon
has 4¢g vertices. Each vertex is determined in H by two (real) parameters, this
gives 8g parameters. The dimension of the space of isometries of H is 3 so
we remain with 8g — 3 parameters. By condition (I) of a canonical polygon
we have 2g equalities and each of the conditions (II), (IV), (V) gives one
equality. We remain with

8g—3—-29g—-3=6g—6

parameters.
THEOREM 11. P(g) is homeomorphic to R5976.

REMARK. The following proof is new. The theorem was first proved by
Coldewey and Zieschang in an annex to [17], see also [18]. An (indirect)
proof has also been given by Buser [2], compare the introduction.

Proof. (i) Let P(g) be a canonical polygon with sides a; and angles a;
between a; and a;+y, i = 1,...,4¢g (the indices are taken modulo 4g). Let "‘?
{0} =a;Naiy1, i=1,...,4g. Denote by b; the geodesic segment between JI
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Qg 0

FIGURE 5

The “triangulation” of a canonical polygon P(g)

Qusp and Q;, i =2,...,49—3, i # 29+ 1. Denote by by, the geodesic
segment between (O, and (Qg42, compare Figure 5.

P(g) is separated by the geodesic segments bs,...,bsy—3 Into one
quadrilateral S and 4g — 4 ftriangles 7;, i = 1,...,4g9 — 4, with sides
bi,biri,aiy for i = 2,...,49 — 4, i # 2g, i # 29 + 1; the triangle T
has sides ay,as, by, the triangle T,, has sides azgi1,a2442,b024+1, and the
triangle To441 has sides byg, brg41,b2442 (nOte that T, is only defined if
g>12).

A point x = (x,...,Xeg—5) € R is called admissible if x; > 0,
=1,...,6g — 5, and if, putting

L(a) = L(aiy2g) =%, i=1,...,2g (L = length)

and
L(b2) — L(bZQ—H) — X2g+1

and

L(bi) = x2g4i—1, 1=3,...,29; L) =xgpi—n, 1=29+2,...,49—3,

the triangle inequalities hold for the triangles Ty, k = 1,...,4g — 4, and
the “quadrilateral inequalities” hold for S (which means that the sum of the

lengths of any three sides of S is greater than the length of the fourth side).
Note that these are purely algebraic conditions on x € R®9—3
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Let O be the subset of R%~3 of admissible points. Being the intersection
of a finite number of open sets, O is open. Moreover, O is convex since O
is the intersection of a finite number of convex sets, namely, if for example
X1 +x >x3 and y; + y, > ys3, then

A +x2) + (1 = D1 +y2) > M+ (1= )3), VA€ [0,1].

(1) Let x € O. Then we associate a formal polygon P(x) to x in
the following way. P(x) is the formal union of the triangles Ty(x), k =
l,...,49 — 4, and the quadrilateral S(x) in the same way as P(g). Hereby,
the triangles, as well as the lengths of the sides of S(x) are defined by the
identifications described in part (i). The angles of the triangles are determined
by their sides (by Theorem 6). The (formal) angles «; of P(x), i=1,...,4g,
are defined as the sum of the angles of the corresponding triangles and (if
[ € {49 — 3,49 — 2,49 — 1,4g}) of S(x). Thereby, the angles of S(x) are
defined by the conditions that S(x) is convex and that

2g
E Qpi—1 + E Qj — E Q; — g Qi

i=g-+1 i=g+1

is minimal, this minimum is denoted by m(x). By Corollary 10 the angles of
S(x) are then determined and hence also the angles of P(x). Note however
that an angle «; of P(x) may be greater than 27, this is why P(x) is called
a formal polygon with formally defined angles.

(i11) Let x € O. Then tx (for t € R, t > 0) 1s also in O (since the triangle
inequalities remain true). I claim that there exists a unique 79 > O (depending
on x) such that P(fpx) is a canonical polygon. I first show uniqueness. Assume
that m(zx) > 0 for P(tx). This means that A(tx) — B(tx) # 0 where

A(tx) = ZOQZ 1+ Z ap;  and  B(tx) —ZOQ[—';— Z Qi1 -

i=g-+1 i=g+1
If A(tx) — B(xx) > 0O, then an angle in S(zx) must be 7 and, by Corollary 8

and the minimality of m(x), this angle must appear in the sum B(zx). This
implies that

(5) 2(tx) == A(tx) + B(tx) > 27.

Of course, (5) also holds if A(tx) — B(tx) < 0. It follows that if P(fpx) is
a canonical polygon, then m(#x) = 0 (since X(fopx) = 2m by the definition
of canonical polygons). Now assume that P(tpx) and P(t;x) are canonical
polygons with #; > fo. By Lemma 9, all angles of the triangles Tj(#x)




TEICHMULLER SPACE AND FUNDAMENTAL DOMAINS 181

are smaller than the corresponding angles in Ty(fox), k=1,...,49 — 4.
Moreover, by Corollary 10, at least two opposite angles in S(7;x) are smaller
than the corresponding angles in S(fpx). This implies that A(t;x) < A(fox)
or B(t;x) < B(fpx). But since A(rx) = B(t;x) and A(tox) = B(tx)
(m(tpx) = m(t;x) = 0), it follows that X(f1x) < >(tox), a contradiction.
This proves uniqueness.

As for existence note that if ¢ — 0, then the volume of all triangles
T, k=1,...,4g — 4, and the volume of S tend to zero which implies by
Theorem 3 that

=) ;- (49— 2.
i=1
On the other hand, for + — oo, all angles in the triangles Ty, k =1,...,49—4,
converge to zero by Lemma 9 and, by Corollary 10 (ii), at least two opposite
angles of S converge to zero. It follows by the condition that

g 2g g 2g
E Qi1 + E Qp; — E Qi — E Qi1
i=1 i=1

i=g+1 i=g+1

is minimal that all angles of § converge to zero and hence X converge to
zero. Therefore, there exists a fy such that Z(fpx) = 2m. Now P(fyx) 1s a
canonical polygon. Namely, conditions (I), (II) and (IV) hold by construction.
By the argument above, we further have m(zpx) = 0 and condition (V) holds.
Finally, condition (IIT) holds since all sides of the triangles of P(fyx) have
finite length and since conditions (II) and (V) hold.

(iv) We therefore have defined a projection from the open convex set O to
the unit sphere in R®~>. Since all operations are controlled by the formulas
of Theorem 6, it is clear that this map is continuous and that the image
is homeomorphic to R®~% as well as homeomorphic to P(g) since every
canonical polygon is thereby obtained.  []

DEFINITION. By Theorem 5 each of the canonical polygons in P(g)
defines a closed hyperbolic surface of genus g. The Teichmiiller space T, is

the space of these hyperbolic surfaces with the topology induced from that
of P(g).

COROLLARY 12. T, is homeomorphic to R%9=% [
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6. APPLICATIONS

LEMMA 13. Let M be a closed hyperbolic surface of genus g which has
29 — 2 simple closed geodesics uy,...,uyg_o which all intersect in the same
point Q and intersect in no other point. Then M has simple closed curves
Urg—1 and upg, passing through Q, such that the curves u; intersect in no
other point than Q, i =1,...,2g9. Moreover, u,,_1 and uy can be chosen

such that
2g
M\ U Uu;
i=1

is the interior of a canonical polygon P(g).

Proof. Cut M along u;, the result is a hyperbolic surface M; with
boundary and genus g — 1, the boundary consists of two simple closed
geodesics v; and w;. Cut M; along u,, the result is a hyperbolic surface
M, with one boundary component v, and genus g — 1. Now cut M along
all 2g — 2 simple closed geodesics uy,...,uz,—>. By induction, the result 1s
a hyperbolic surface M,,_, with one boundary component v and genus 1.
More precisely, the boundary v is piecewise geodesic with 4g — 4 pieces
and we may assume that the notation is chosen such that these pieces
appear on v in the order (the pieces are called like the corresponding closed
CUrves) uy, Uy, ..., Uzg—2, Ui, Uz, ..., Urg_o (note that closed geodesics intersect
transversally). Denote by S and S’ the two copies of Q on v between u
and wupqy—o. Let upy, 1 be a simple geodesic in M>,_, which joins § and S’
such that up,_; is not homotopic to a part of v. Cut M, along uy,_.
The result is a hyperbolic surface M,,_; of genus zero with two boundary
components w and w’ which both consist of 2g — 1 geodesic pieces in the
order uj,us,...,usq—2,uz4—1. Denote by R and R’ the copies of Q between
u; and upy,—; on w and w’, respectively. Let up, be a simple geodesic
in M, which joins R and R', uy, can be chosen such that when we
cut M,y along uy,, then we obtain the interior of a canonical polygon as
desired. [

DEFINITION. A hyperelliptic surface is a closed hyperbolic surface of
genus ¢ which has an isometry ¢ with ¢* = id and with exactly 2g + 2
fixed points.

In [14], the equivalence of (i) and (i1) of the following theorem was first
proved. With the approach chosen here, we can give a third equivalence and
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a different proof.

THEOREM 14. Let M be a closed hyperbolic surface M of genus g. Then
the following conditions are equivalent.

(i) M is hyperelliptic.
(ii) M has a set of at least 2g—2 simple closed geodesics which all intersect
in the same point and intersect in no other point.

(iii) M has a corresponding canonical polygon with equal opposite angles
(Oéi = Q2g+i» [ = 1,,29)

Proof. 1 shall prove (i) = (i) = (ii1) = (1).

Let M be hyperelliptic. Let R;, i =1,...,2g + 2, be the fixed points of
a hyperelliptic involution ¢. Let ¢; be a simple geodesic segment from R;
to R,. Then ¢; Ug(c;) is a simple closed geodesic u; since ¢? = id. It also
follows that on uy, there are only two fixed points of ¢ and that M; = M\ u,
is connected. Therefore, we can choose a simple geodesic segment ¢, from
R; to R; which intersects u; only in R;. By the same argument as above,
c2Ud(cy) is a simple closed geodesic, My = M\ (u; Uuy) is connected and on
u; Uuy, there are only three fixed points of ¢. Continuing this construction

we can find simple closed geodesics ui,...,uyq—> which all intersect in R,
and in no other point. This proves (i) = (ii).
Q4g
Q4g—2
Org—2
Q2g
FIGURE 6

The partition of a canonical polygon P(g) into two (2g — 1)-gons and two quadrilaterals

Assume now that M has 2g — 2 simple closed geodesics uy, ... , UDg—2
which all intersect in the same point Q and intersect in no other point. By
Lemma 13 we then can find simple closed curves Urg—1 and up, such that
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2g
M\ U U;
i=1

1s the interior of a canonical polygon P(g) with the usual notation. For
i=1,...,4g, let {Q;} =a;Na;r;. In P(g) let d; be the geodesic segment
from Q44 to Ory—2, dp the geodesic segment from O, to Qs4g—2, and d the
geodesic segment from Oy, to Qu,, compare Figure 6. Then P(g)\ (d, Ud,Ud)
has four connected components, two quadrilaterals W, having 4 and dj,
J = 1,2, among the sides and two (2g — 1)-gons V; having d; among the
sides, j = 1,2. Since u;, i = 1,...,2g9 — 2, are simple closed geodesics, it
follows that «; = ajyp4 for i =1,...,2¢g — 3. This implies that V; and V;
are isometric and that d; and d, have the same length. Therefore, W; and
W, are quadrilaterals with equal lengths of the four sides. Fix now W; and
try to vary W, such that the lengths of the sides remain invariant and so that
property (V) for canonical polygons holds. This is certainly the case if W,
and W, are isometric. But then Corollary 8 implies that this is the unique
possibility. Therefore, W; and W, must be isometric and hence «o; = ;g4
for all i=1,...,2g, which proves (ii) = (ii1).

Now assume that (ii1) holds. Let d be the geodesic segment from (4 to
Qsq. Then d separates P(g) into two isometric (2g + 1)-gons and the -
rotation around the centre C of d induces an isometry ¢ of M with ¢? = id.
The fixed points of ¢ are C, the point O corresponding to the vertices of
P(g) as well as the centres of the sides a;, i =1,...,2¢g. Therefore, ¢ 1s a
hyperelliptic involution which proves (ii1) = (1). L]

COROLLARY 15. All closed hyperbolic surfaces of genus 2 are hyperel-
liptic.

Proof. All closed hyperbolic surfaces have two simple closed geodesics
which intersect in a unique point. The corollary follows by Theorem 14. []

DEFINITION. Let M, be a closed hyperbolic surface in T,. For every
M € T, fix a homeomorphism ¢, homotopic to the identity, from My to M
(dy exists since closed surfaces of the same genus are homeomorphic). Let
u be a simple closed geodesic in My. Then, in the homotopy class of @y (u)
there exists a unique simple closed geodesic which is denoted by ®,(u). The
function

L(u): Ty — R

which associates to M the length of ®,,(u) is called a geodesic length function.
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REMARK. Itis well known that T, can be parametrized by a finite number
of geodesic length functions, see for example [12], [13] where it is shown
that T, can be parametrized by 6g — 5 geodesic length functions.

THEOREM 16. The Teichmiiller space T, for g =2 can be parametrized
by 7 (suitably chosen) geodesic length functions L(uy),...,L(u7), taken
as homogeneous parameters (which means that L(u)/L(u7), . .., L(us)/L(u7)
gives a parametrization of T, ).

Proof. Let P(2) be a canonical polygon corresponding to a closed
hyperbolic surface My of genus 2. As usual let O; =aq;Nai1, i1=1,...,8,
where the @; are the sides of P(2). Let b; be the geodesic segment (in P(2))
between Q; and Q;i4, i = 1,...,4. By Corollary 15, M, is hyperelliptic,
therefore (compare Theorem 14) b; corresponds to a simple closed geodesic
in My, denoted by B;, i =1,...,4. It also follows by Theorem 14 that g;
corresponds to a simple closed geodesic in My, denoted by A;, i=1,...,4.

Os O

Os o

FIGURE 7

A triangulation of a canonical polygon P(g) for g =2

I now prove that the 7 length functions, given by the simple closed
geodesics A;, i =1,2,3, B;, i=1,...,4, taken as homogeneous parameters,
give a parametrization of T5. In order to do this, it is enough (by Theorem 11
and Corollary 12) to show that P(2) is uniquely determined by the lengths
of a;, i=1,2,3, b;, i=1,...,4, taken as homogeneous parameters (in the
sequel I shall refer to these lengths calling them “the seven lengths™). This can
be done analogously as in the proof of Theorem 11. The geodesic segments
bi, i=1,...,4, intersect in a point C, the “centre” of P(2), and they separate
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P(2) into 8 triangles D; so that a; is a side of D;, j=1,...,8, compare
Figure 7. Since M is hyperelliptic, D; and Dj;4 are isometric, j = 1,...,4.
Denote by ¢; the angle of D; in the vertex C, i = 1,...,4. The seven lengths
determine the triangles D;, i = 1,2,3, as well as two sides and the angle 64
of D4 by the condition

(6) A=) G=m,

so they determine also Dy4. This shows that the seven lengths determine P(2).
Multiply the seven lengths by a positive real ¢ and assume that the seven
new lengths also determine a canonical polygon P,(2). If ¢+ > 1, then ¢;,
i =1,2,3, are smaller in P,(2) than in P(2) by Lemma 9, therefore, by (6),
04 1s larger in P;(2) than in P(2). It follows by Lemma 7 that the sum of
the two other angles of D, is smaller in P,(2) than in P(2). Since all angles
in D;, i =1,2,3, are smaller in P;(2) than in P(2) by Lemma 9, it follows

that
4
Do
i=1

is smaller in P,(2) than in P(2). But this contradicts condition (II) of canonical
polygons. An analogous contradiction follows if # < 1 proving thus that 7 = 1
and therefore the theorem. [

REMARK. Theorem 16 1is new. It is well known that 6g—6 length functions
can never parametrize T, so that the situation of Theorem 16 is the best we
can expect. It is not known whether 6g — 5 geodesic length functions, taken
as homogeneous parameters, can parametrize 1, for g > 3.
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