
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 45 (1999)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: PUZZLES DE YOCCOZ POUR LES APPLICATIONS À ALLURE
RATIONNELLE

Autor: ROESCH, Pascale

Kapitel: 2.5 Cas d'un bout critique périodique

DOI: https://doi.org/10.5169/seals-64443

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-64443
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


164 P. ROESCH

En résumé, les lemmes 2.9, 2.10 et 1.12 garantissent que, pour tout point x
de dB(a), l'un des graphes T(0), ou T(1 — 0) bague infiniment x et bague le

point critique —a. Le théorème de Yoccoz 1.10 et le lemme 2.11 ci-dessous

assurent alors que dB (à) est localement connexe en x ce qui achève la preuve
du théorème 2.1, sauf dans la cas où le bout de —a est périodique et si x
tombe dans Imp (—a) par itération. C'est ce cas qu'il reste à étudier dans la

partie suivante 2.5.

Pour trouver des voisinages connexes d'un point x de 9B(a), on va extraire
de chaque intersection Pn(x) H dB (a) un voisinage connexe de x dans dB(à)

qui est de la forme f] Q(u,r,rf) avec r, r' G Q/Z où
ue] o,i[

Q(u,r, r') {<t>a(re2,7rt) | r G ]w, 1[, / G ]r, r'[}

LEMME 2.11. Tout point x de dB(a) dont l'impression P Pn(x) est ré-
n> o

duite à x possède un système fondamental de voisinages connexes dans dB(a).

Preuve. Toute pièce de profondeur n rencontre B(a) suivant des secteurs

du type Q(2_1//J', r, r7) car son bord est formé, dans B(a), (de morceaux) de

rayons rationnels et de l'équipotentielle de niveau 2~l/d". Par ailleurs, comme

x appartient à Pn(x)OdB(a), il possède un voisinage dans Pn(x) qui rencontre

B(a). Ce voisinage rencontre alors un secteur Q(2~lfd'\ r, t') C Pn(x) P\ B(a)
où Ra(r), Ra(r') font partie de dPn(x). Ainsi, l'intersection

u„= H ß("' r' T') C
ue] o,i[

est un voisinage de x dans dB(a), compact et connexe (c'est une intersection
décroissante de parties compactes connexes). Comme l'intersection des pièces

Pn{x) se réduit au point x, la suite Un constitue un système fondamental de

voisinages connexes de x dans dB(a).

2.5 Cas d'un bout critique périodique

On considère à présent le graphe F parmi T(6) et T(1 — 0) qui bague

le point critique libre —a (à la profondeur 0 ou 1) et on suppose que
le bout de —a est &-périodique. D'après le théorème de Yoccoz 1.10,

l'application fk : Pm±k(—a) Pm(~û) est à allure quadratique — pour un

entier m assez grand — et son ensemble de Julia rempli K est l'impression

Imp (—a) H Pn(—a). Deux cas se présentent alors. Si B(a) n'intersecte
n> 0

pas K, la connexité locale de dB(a) découle encore une fois du théorème de
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Yoccoz 1.10 et du lemme 2.11, car aucun point de dB(a) ne tombe dans K

par itération et toutes les impressions sont donc réduites à des singletons.

Sinon, on montre que dB(a) H K est formé d'au plus un point (lemme 2.13)

qui est un point fixe par fk noté ß. Il en résulte que, si l'orbite d'un point

x G dB(a) passe dans K, la suite des parties Pn(x) Pi dB(a) forme, dans

dB(a), un système fondamental de voisinages de x puisque leur intersection

est réduite à une préimage itérée de dB(a)nK C {0}. Le lemme 2.11 permet

alors de conclure que dB{a) est localement connexe en x. Ce qui achève la

preuve du théorème 2.1.

Dorénavant, on suppose que K n dB{a) ^ 0 et dans la fin de cet article on

montre que dB(a) fi K est formé d'au plus un point. Dans un premier temps,

on trouve un point répulsif ou parabolique dans K n dB(a) :

Lemme 2.12. Il existe dans B(a) un rayon Ra(rj) qui est k-périodique

par f et aboutit en un point ß G K D dB(a) — fixe par fk.

Preuve. On reprend les notations données juste avant le lemme 2.11.

On montre tout d'abord (par récurrence sur n) que, si une pièce Pn de

profondeur n rencontre B(a), l'intersection Pn fi B{a) est formée d'un seul

secteur du type <2(w,t, r'), où l'intervalle ]r, r'[ du cercle a une longueur
strictement inférieure à l/<in+1.

Une pièce Pq de profondeur 0 a clairement cette propriété. D'autre part,
toute pièce Pn+ \ de profondeur n + 1 est contenue dans une pièce P'n de

profondeur n et a pour image par / une (autre) pièce Pn de profondeur n.
Par hypothèse de récurrence, Pn fl B(a) est du type Q(un, r,u rffi, avec

\Tn~Tn\ < 1 /dn+x. L'ouvert Q(un) rn, r'n) a donc d préimages dans B{a), qui
sont de la forme

q(u,t + + ^), 0 < i < d — 1,

où u — ujd et \r' — t\ < l/dn+2. L'intersection Pn+\ n B(a) coïncide alors

avec l'un de ces secteurs ouverts: elle en contient un tout entier car elle
est bordée par des rayons préimages de ceux qui bordent Pn et elle ne peut
en contenir deux car deux tels secteurs diffèrent de \/d alors que la pièce
P!n D P,7+i rencontre B{a) dans un secteur d'ouverture < l/d (hypothèse de

récurrence). On choisit alors r, r' pour que

Pn+1 fl B(a) Q(u1 r, r').
Soit maintenant x un point de K ndB(a). S'il se trouve sur une préimage
Tn du graphe T, c'est immédiatement le point d'aboutissement d'un rayon
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prépériodique de B(a). En prenant son image par un itéré convenable de /,
on obtient un rayon périodique qui converge vers un point ß G KH dB(a) fixe

par fk. Si x n'est sur aucune préimage du graphe, la pièce Pn(x) rencontre

B(a) suivant un secteur de la forme Q(2~l^d'\rn,rß) avec \rn — r/| < \/dn.
Les angles (r„), {r'n) forment des suites adjacentes dont on note 77 la limite
commune. Comme x G K C Pn(—o), nécessairement Pn(x) Pn(—a) et, de

ce fait,
fk Pn+kix)n B(a)) Pn(x) n

pour n assez grand. Par suite, dkr) est dans l'intervalle ]rn,r'n[ C R/Z, de

sorte que dkrj 77. Le rayon d'angle 77 converge alors vers un point ß
(théorème 2.4). Ce point ß est fixe par fk et, comme il se trouve dans toutes

les pièces Pn(—a), il est dans K H dB(a).

LEMME 2.13. Il existe deux rayons externes R{Q, R{Ç')> d'angles Ç,

rationnels, qui aboutissent au point ß et sont tels que la courbe de Jordan

R(0 U R(C) U {ß} sépare K \ {ß} de B(a) \ {ß}.

Preuve. Dans la preuve du lemme 2.12, on a vu que Pn(—a) DB(a) est

de la forme Q(2-1/^, r„, rß). Les rayons Ra(rn), Ra(j'n) convergent vers des

points yn, y'n de dB(a) en lesquels aboutissent aussi des rayons externes

qui font partie de dPn(—a) et qu'on note respectivement /?((«), R(Ç'n). La
suite Çn (resp. ('n) est alors croissante majorée (resp. décroissante minorée) et

converge donc vers un angle limite (resp. ('). De plus, comme fk est un

homéomorphisme local en les points yn, y'n et que fk{Pn^k(—a)) s= Pn(—a)

pour n assez grand,

f{R((n+k))=R(Cn),etf(R(Cn+k)) =R(0-
Il en résulte que (d + l)^Cn+£ Cn (dans R/Z) et, par suite, que Ç est

périodique de période divisant k. Les rayons R(Q, R(C) convergent ainsi

vers des points y, y' qui sont fixes par fk et qui appartiennent à K — car
la partie des rayons R(Ç), R(C) située au-delà du potentiel 2~l/d" se trouve
dans Pn(—a).

D'autre part, le théorème de redressement de A. Douady et J. H. Hubbard

[DH2, théorème 1] montre que fk est conjuguée à un polynôme quadratique

fc(z) z2~hc par un homéomorphisme a d'un voisinage de K sur un voisinage
de l'ensemble de Julia rempli Kc de fc. Les points a(ß), a(y) et a(y') sont

des points fixes de fc en lesquels aboutissent des arcs externes fixes par fc

— à savoir a(Ra(r/)), a{R(Q) et cj(R(C0)• Or un polynôme quadratique

possède au plus deux points fixes parmi lesquels un seul — généralement
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noté ßc — est l'aboutissement d'un arc externe fixe [P, théorème A]. Par

suite, R(Q, R(C) convergent nécessairement vers ß.

Finalement, R(QUR(C) forme une courbe de Jordan qui sépare K\{3} de

B(a) \{ß}. En effet, le losange Vn bordé par Ra{rn), Ra(j'n), R{Q et R(Q
contient la pièce Pn(—à) par construction. Il contient donc K et, par suite,

au moins un point périodique répulsif p (différent de 3 et un rayon externe

qui converge vers p, de sorte que Ç ç', Ainsi, la composante connexe U

de C \ (jR(C) U R(C)) qui contient p contient K \ {3} — car K ne peut

rencontrer la courbe R(Q U R(C) qu'en 3 et ce point ne disconnecte par K

[M, théorème 6.10].
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