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164 P. ROESCH

En résumé, les lemmes 2.9, 2.10 et 1.12 garantissent que, pour tout point x
de 0B(a), 'un des graphes I'(d), ou I'(1 — 6) bague infiniment x et bague le
point critique —a. Le théoréeme de Yoccoz 1.10 et le lemme 2.11 ci-dessous
assurent alors que 0B(a) est localement connexe en x ce qui achéve la preuve
du théoréeme 2.1, sauf dans la cas ou le bout de —a est périodique et si x
tombe dans Imp(—a) par itération. C’est ce cas qu’il reste a étudier dans la
partie suivante 2.5.

Pour trouver des voisinages connexes d’un point x de 9B(a), on va extraire
de chaque intersection P,(x) N OB(a) un voisinage connexe de x dans OB(a)

qui est de la forme () O, 7,7") avec 7,7 € Q/Z ou
ue]0,1]

O, 7,7") = {@u(r®™) | r € Ju, 11, t € 17,7'[} .

LEMME 2.11. Tout point x de OB(a) dont 'impression () P,(x) est ré-
n>0
duite a x posseéde un systeme fondamental de voisinages connexes dans OB(a).

Preuve. Toute piece de profondeur n rencontre B(a) suivant des secteurs
du type 0@~ d", 7,7") car son bord est formé, dans B(a), (de morceaux) de
rayons rationnels et de I’équipotentielle de niveau 2~'/¢" . Par ailleurs, comme
x appartient a P,(x)N0IB(a), il possede un voisinage dans P,(x) qui rencontre
B(a). Ce voisinage rencontre alors un secteur 0~V 7'y C P,(x) N B(a)
ou R,(7), R.,(7") font partie de OP,(x). Ainsi, I’intersection

Uo= [ Ou,7,7)CP,x)
u€10,1[
est un voisinage de x dans dB(a), compact et connexe (c’est une intersection
décroissante .de parties compactes connexes). Comme 1’intersection des pieces
P,(x) se réduit au point x, la suite U, constitue un systeme fondamental de
voisinages connexes de x dans OB(a). L]

2.5 CAS D’UN BOUT CRITIQUE PERIODIQUE

On consideére a présent le graphe I' parmi I'(6) et I'(1 — 6) qui bague
le point critique libre —a (a la profondeur 0 ou 1) et on suppose que
le bout de —a est k-périodique. D’apres le théoreme de Yoccoz 1.10,

’application f*: Pii(—a) — P,(—a) est & allure quadratique — pour un

entier m assez grand — et son ensemble de Julia rempli K est I’'impression

Imp(—a) = () Pn(—a). Deux cas se présentent alors. Si B(a) n’intersecte
n>0

\
b

pas K, la connexité locale de 0B(a) découle encore une fois du théoréme de J‘
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Yoccoz 1.10 et du lemme 2.11, car aucun point de OB(a) ne tombe dans K
par itération et toutes les impressions sont donc réduites a des singletons.
Sinon, on montre que OB(a) N K est formé d’au plus un point (lemme 2.13)
qui est un point fixe par f* noté (. Il en résulte que, si I'orbite d’un point
x € OB(a) passe dans K, la suite des parties P,(x) N 0B(a) forme, dans
OB(a), un systéme fondamental de voisinages de x puisque leur intersection
est réduite & une préimage itérée de IB(a)NK C {F}. Le lemme 2.11 permet
alors de conclure que OB(a) est localement connexe en x. Ce qui acheve la
preuve du théoreme 2.1.

Dorénavant, on suppose que KNAB(a) # & et dans la fin de cet article on
montre que OB(a) N K est formé d’au plus un point. Dans un premier temps,
on trouve un point répulsif ou parabolique dans K N dB(a) :

LEMME 2.12. 1l existe dans B(a) un rayon R,(n) qui est k-périodique
par f et aboutit en un point 3 € K N OB(a) — fixe par f*.

Preuve. On reprend les notations données juste avant le lemme 2.11.
On montre tout d’abord (par récurrence sur n) que, si une piece P, de
profondeur n rencontre B(a), Uintersection P, N B(a) est formée d’un seul
secteur du type Q(u,7,7’), ou l'intervalle ]7,7'[ du cercle a une longueur
strictement inférieure a 1/d""!.

Une piece Py de profondeur O a clairement cette propriété. D’autre part,
toute piece P,y; de profondeur n + 1 est contenue dans une piece P!, de
profondeur n et a pour image par f une (autre) piece P, de profondeur n.
Par hypothése de récurrence, P, N B(a) est du type Qun,7,,7,), avec
7! —1,| < 1/d"T!. Louvert Q(u,, 7, 7,) a donc d préimages dans B(a), qui
sont de la forme

i, ,
Q(u,7+2,7+3>, 0<i<d-1,
et |7/ — 7| < 1/d"™*. Lintersection P, N B(a) coincide alors
avec l'un de ces secteurs ouverts: elle en contient un tout entier car elle
est bordée par des rayons préimages de ceux qui bordent P, et elle ne peut
en contenir deux car deux tels secteurs different de 1/d alors que la piece

P, D P,y rencontre B(a) dans un secteur d’ouverture < 1/d (hypothése de
récurrence). On choisit alors 7, 7" pour que

1/d

ol u = u,

Pn—l—l M B(a) - Q(ua T, 7-/) .

Soit maintenant x un point de K N dB(a). S’il se trouve sur une préimage
I, du graphe I', ¢’est immédiatement le point d’aboutissement d’un rayon
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prépériodique de B(a). En prenant son image par un itéré convenable de f,
on obtient un rayon périodique qui converge vers un point 5 € KNOB(a) fixe
par f*. Si x n’est sur aucune préimage du graphe, la pice P,(x) rencontre
B(a) suivant un secteur de la forme Q2% 7,, 7)) avec |1, — 7!| < 1/d".
Les angles (7,), (7,) forment des suites adjacentes dont on note 7 la limite
commune. Comme x € K C P,(—a), nécessairement P,(x) = P,(—a) et, de
ce fait,

F4(Pusr(x) N B(@)) = Py(x) N B(a)

pour n assez grand. Par suite, d*n est dans Dintervalle ]7,,7.[ C R/Z, de
sorte que d*n = n. Le rayon d’angle 7 converge alors vers un point (3
(théoréme 2.4). Ce point 3 est fixe par f* et, comme il se trouve dans toutes
les piéces P,(—a), il est dans K N OB(a). [

LEMME 2.13. 1l existe deux rayons externes R((), R(("), d’angles (, ('
rationnels, qui aboutissent au point 3 et sont tels que la courbe de Jordan

R(OURCHUA{B} sépare K\ {B} de B(a)\ {B}.

Preuve. Dans la preuve du lemme 2.12, on a vu que P,(—a) N B(a) est
de la forme Q74" 7, 7!). Les rayons Ru(T,), R,(7!) convergent vers des
points y,, y, de OB(a) en lesquels aboutissent aussi des rayons externes
qui font partie de OP,(—a) et qu'on note respectivement R((,), R(()). La
suite ¢, (resp. () est alors croissante majorée (resp. décroissante minorée) et
converge donc vers un angle limite ¢ (resp. ¢’). De plus, comme f* est un
homéomorphisme local en les points y,, y, et que f*(P,i(—a)) = P,(—a)
pour n assez grand,

FY(RGus)) =RG), et fARC4) =R

Il en résulte que (d + l)kCn+k = (, (dans R/Z) et, par suite, que ( est
périodique de période divisant k. Les rayons R((), R(¢') convergent ainsi
vers des points y, ¥ qui sont fixes par f* et qui appartiennent & K — car
la partie des rayons R((), R({') située au-dela du potentiel -/
dans P,(—a).

D’autre part, le théoréme de redressement de A. Douady et J. H. Hubbard
[DH2, théoréeme 1] montre que f* est conjuguée a un polyndme quadratique
f.(2) = 7% +c¢ par un homéomorphisme ¢ d’un voisinage de K sur un voisinage
de I’ensemble de Julia rempli K. de f,. Les points (), o(y) et o(y’) sont
des points fixes de f. en lesquels aboutissent des arcs externes fixes par f.
— 4 savoir o(R,(n)), o(R(Q) et o(R()). Or un polyndme quadratique
posséde au plus deux points fixes parmi lesquels un seul — généralement

se trouve
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noté (3. — est I’aboutissement d’un arc externe fixe [P, théoreme A]. Par
suite, R(C), R(C') convergent nécessairement vers 3.

Finalement, R(()UR((') forme une courbe de Jordan qui sépare K \{3_} de
B(a)\ {B}. En effet, le losange V, bordé par Ru(1), Ra(t)), R(Gy) et R(G)
contient la piece P,(—a) par construction. Il contient donc K et, par suite,
au moins un point périodique répulsif p (différent de &) et un rayon externe
qui converge vers p, de sorte que ¢ # ¢’. Ainsi, la composante connexe U
de C\ (E(Q UE(C’)) qui contient p contient K \ {3} — car K ne peut
rencontrer la courbe R(¢) UR(¢") qu’en 3 et ce point ne disconnecte par K
[M, théoréme 6.10]. [
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