
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 45 (1999)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: PUZZLES DE YOCCOZ POUR LES APPLICATIONS À ALLURE
RATIONNELLE

Autor: ROESCH, Pascale

Kapitel: 2.4 Construction de graphes admissibles

DOI: https://doi.org/10.5169/seals-64443

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-64443
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


PUZZLES DE YOCCOZ 159

disty (7,, (r): 7n+l W) < CX"° "

ce qui entraîne la convergence uniforme voulue.

Si maintenant —a est dans B(a), alors f~l{B(a)) B(a). Il en découle

l'égalité dB(a) J(f) dB{00). En effet, tout point x qui n'est pas dans

B(d) a un voisinage V disjoint de B(a). Par suite, toutes ses images itérées

f"(V) évitent B(a), ce qui montre que la famille {/"} est normale sur V,
donc que x n'appartient pas à J(f). On applique alors à une représentation de

Böttcher <fi: D —» B(00) le même raisonnement que plus haut pour montrer

que dB (a) est une image continue du cercle.

Il reste à voir que dB (à) est bien une courbe de Jordan. On distingue
deux cas :

Si —a est dans B(oo), la représentation conforme <fia : D —>• B(a) est bien

définie et le résultat découle alors du lemme 2.5.

Si —a est dans B{a), en conjuguant / par une transformation de Mœbius

0 qui échange a et 00, on obtient un polynôme g qui possède un point fixe

super-attractif O(oo) et dont le bassin immédiat (<D(B(00))) ne contient pas
d'autres points critiques. Dans ce cas on a bien une représentation conforme
du bassin immédiat à laquelle on peut alors appliquer le lemme 2.5.

2.4 Construction de graphes admissibles

On suppose désormais que le point critique libre —a n'est ni dans B(à)
ni dans £(00) et on regarde le polynôme / comme une application à allure
rationnelle de X' dans X où

X=C\(4((l/2)D)u<ya/2)D)) et

Figure 1

Le graphe T((9) avec, en gris, le bassin immédiat B(a) privé de 1/2)D)
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Pour construire un graphe admissible, on observe d'abord que, pour tout
I > 1, l'angle 0 \/(dl — I) est, modulo 1, /-périodique par multiplication
par d. D'après le théorème 2.4-a), le rayon Ra(6) converge donc vers un point
périodique x répulsif ou parabolique. En prenant / assez grand, on s'assure

d'une part que l'orbite positive du point critique —a est disjointe de celle
de v et d'autre part que x est répulsif (en effet, / possède au plus une orbite

périodique parabolique car tout orbite de ce type attire un point critique). Le
théorème 2.4-b) fournit alors un rayon externe périodique R(rj) qui aboutit

en v. Avec ces rayons, on forme*) le graphe admissible suivant:

r(0) dx U f X n ((J Raid19) UR((d+ iy'77)) J
^ ;>o '

Sur le cercle identifié à [0, l]/(0 ~ 1), les angles dl6, 0 < i < / — 1,

sont rangés en ordre croissant. On va maintenant vérifier que le graphe T(0)
satisfait les hypothèses du théorème 1.10.

On distingue deux types de pièces de profondeur 0 découpées par T(0),
selon que leur bord est formé, en dehors de dX, de quatre rayons — deux dans

B(a), deux dans B(00) — ou simplement de deux rayons externes. Comme

on s'intéresse surtout aux pièces du premier type, on appellera losange tout
ouvert de C dont la frontière est l'adhérence d'exactement quatre rayons
d'angles rationnels dont deux sont dans B(a) et les deux autres dans B(00).
Les propriétés suivantes sont immédiates:

1) tout losange rencontre B(a) \ {a} suivant une partie stricte;

2) si C et V sont deux losanges tels que U n V n B(a) {a}, alors

u n y {a, 00} ;

3) l'union de deux losanges qui s'intersectent est soit un losange, soit

C \ {a, 00} ;

4) si U et y sont deux losanges tels que f(dU) dV, f(U) rencontre

y H B(a) et si U intersecte B(a) dans un secteur angulaire d'ouverture
strictement inférieure à l/d (i.e. si 0\ < 02 sont les arguments des rayons
de dUDB(a) alors 02-0{< l/d) alors U D B(a) C f~l(V).

Pour le point 4), il suffit de voir que U H B(a) ne coupe pas de préimages du

bord de V. Ceci découle du fait que l'ouverture angulaire est trop petite pour
intersecter f~x(dV) D B(a), puisque dU est déjà dans f~l(dV). Par suite, /
envoie U H B(a) dans VDB(a), d'où l'affirmation.

*) Souvent, par abus de langage, on dira qu'un rayon fait partie de l'adhérence ou du bord
d'une pièce si cet ensemble contient au moins deux points du rayon. D'autre part, par extension,
on appellera encore rayon toute préimage itérée d'un rayon de B{a).
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On note Ti(0) le graphe /_1 (r(0)). Les rayons de B(a) qui font partie de

Tj (0) \ T(0) ont pour angles les dl0 + (j/d), 0 < i < l — 1, l < j < d — l, qui

sont tous dans l'intervalle du cercle contenant 0 et délimité par 0 + (1 /d) et

9/d (voir la figure 2). On se donne d'autre part un losange £7(0) qui contient

R0(0) \ {a} et est bordé par Ra{9 + (1 /d)), Ra(9/d) et deux rayons externes

faisant partie de ri(0).

Figure 2

Le cas d 4, 1—3 vu dans D via avec, en pointillés, B(a) D r(0),
en continu, B(a) D {T\(6)\ T(0)) et, en gris, U(6) fl B(o)

LEMME 2.8. Tout point de J(f)n (U(6)\Ti(6)) est bagué par T(6) à la

profondeur 0.

Preuve. L'intersection U(0)P\Xf qui est une union de pièces de

profondeur 1, est relativement compacte dans la pièce de profondeur 0 qui
rencontre Ra(0) et qu'on note Pq (voir la figure 2). En effet, Pç, est la trace

sur X d'un losange P0 bordé dans B(a) par Ra(6) et Ra(6/d+l/d). Comme
1 > 0+ \/d > 0/d-P l/d et 0 < 9/d < 0, l'intersection U(9) H (C\P0) DB(a)
est réduite à a. Par suite, U(9) et C \PQ ne se touchent qu'en a —
propriété 2) des losanges. Ainsi, U(9) C\Xf c Pq.

LEMME 2.9. Soit 6 - 1 /{d1 - 1) et 6' 1 /(/ - 1) avec l' > l + 1 et
l assez grand. Tout point de dB(a) est bagué à une profondeur bornée par
Tun des graphes T(0) ou T(0/)-

Preuve. On remarque tout d'abord que

((U(0) \ n(0)) u (U(6')\r,(0'))) n X' (cm u
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car les graphes et Ti (9f) sont disjoints dans X'. Par suite, il suffit
de montrer qu'il existe un entier n > 0 tel que |J f~l{U(9) U U{9'))

0<i<n
contienne dB(a).

L'ouvert U(9) U U{9') est un losange que l'on note Vo, les rayons de

B(a) inclus dans <9Vo sont d'angles 77 6' + 1 /d, £ 9/d. On note n le

plus petit entier tel que r\/dn < £, on va construire, pour 0 < m < n, un
ouvert Vm ayant les propriétés suivantes :

• Vmn dB(a) est inclus dans (J f~l(V0) ;

0<i<m

• Vm, pour m < n, est un losange qui contient Ra(l/dm) et est bordé
dans B(a) par Ra{j]jdm) et Ra(0'>

• Vn C\{a}.
Il existe un losange V[ contenant Ra(l/d) et bordé dans B(a) par Ra(rj/d),
Ra((/d+ 1 /d), dont tout le bord est inclus dans f~~1 (OVq). Alors, d'après
la propriété 4), V[ H B(a) C /_1(V0). Comme (/d + \/d > 77, les losanges

V[ et Vo s'intersectent et V\ Vo U V[ est un losange ayant les propriétés
demandées. On construit de même un losange V'm pour tout m < n et on

pose vm

Figure 3

Illustration de la démonstration du lemme 2.9

Remarques.

a) Toutes les constructions précédentes et en particulier les lemmes 2.8

et 2.9 restent évidemment valables si on prend des graphes d'angle opposé
i.e. d'angle 1—9 avec 9 toujours de la forme l/(dl — 1).

b) La profondeur à laquelle on parvient à baguer les points de dB (a) est

bornée indépendamment du point considéré, mais croît avec / et l'. Ce fait est
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insignifiant puisque l'on obtient finalement, d'après le lemme 1.12, que tout

point de dB{a) est infiniment bagué par un graphe T(0) avec 0 l/(dl - 1)

et / assez grand.

D'après la remarque b) précédente, il reste à baguer le point critique —a

(qui se trouve dans K(f)) et conclure par le théorème 1.10. On a le lemme

suivant :

Lemme 2.10. Il existe /0 G N et 6 G {±1} dépendant uniquement de

a tels que pour tout l > lo, le point critique libre —a est bagué à la

profondeur 0 ou 1 par T(S6) où 6 est de la forme 1 /{d1 — 1).

On assimile dans cet énoncé —6 et 1 — 6.

Preuve. Pour d > 2, et / assez grand, l'ensemble U(9) contient tous les

rayons Ra(t), t G [1/2,1] et U( 1 —6) tous les rayons Ra(t), t G [0, 1/2]. De

ce fait, U{6) U U{\ — 6) contient B(a) \ {a] ; c'est donc C \ {a} en vertu des

propriétés 1) et 3) des losanges. De plus, comme les graphes sont admissibles

(on prend lo grand dans ce but), —a n'est sur aucun graphe de profondeur 1.

Ceci résout le cas d > 2.

Pour d 2, l'ouvert U{6) U U(l — 6) ne recouvre plus B(a). Néanmoins,

pour tout / > — loge/log d où e est un rationnel petit, U(9) contient tous les

rayons Ra(t), t G [1/2+g, 1] et £7(1 — 0) tous les rayons Ra(t), t G [0,1/2 —g].
On suppose donc désormais que le point critique —a est dans un losange V
bordé par Ra( 1/2 +s), Ra( 1/2-e) et contenant Ra( 1/2). Pour voir que —a

est bagué à la profondeur 1, comme a priori il se peut que V contienne
une partie d'une préimage de B(a), on va montrer que la valeur critique
f{-a) est baguée à la profondeur 0 et plus précisément qu'elle se trouve dans

c\v c u(0) u u{\ - 6).

On suppose donc que f(-a) est dans V, qui est un disque. Comme /
est de degré 3 et que -a est simple, f~l(V) est formé de deux disques et
ceux-ci ne touchent pas f~\ÔV). Or il y a deux losanges Vu V2 évidents
qui ont leur bord inclus dans f~l(dV), contiennent respectivement Ra( 1/4),
Rai3/4) et vérifient

CÔVl Ct i?«(ï±|)Cay2'

Par suite, les deux composantes de f~\V) sont incluses dans Vj U V2 qui
contient donc — aet est disjoint de V.
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En résumé, les lemmes 2.9, 2.10 et 1.12 garantissent que, pour tout point x
de dB(a), l'un des graphes T(0), ou T(1 — 0) bague infiniment x et bague le

point critique —a. Le théorème de Yoccoz 1.10 et le lemme 2.11 ci-dessous

assurent alors que dB (à) est localement connexe en x ce qui achève la preuve
du théorème 2.1, sauf dans la cas où le bout de —a est périodique et si x
tombe dans Imp (—a) par itération. C'est ce cas qu'il reste à étudier dans la

partie suivante 2.5.

Pour trouver des voisinages connexes d'un point x de 9B(a), on va extraire
de chaque intersection Pn(x) H dB (a) un voisinage connexe de x dans dB(à)

qui est de la forme f] Q(u,r,rf) avec r, r' G Q/Z où
ue] o,i[

Q(u,r, r') {<t>a(re2,7rt) | r G ]w, 1[, / G ]r, r'[}

LEMME 2.11. Tout point x de dB(a) dont l'impression P Pn(x) est ré-
n> o

duite à x possède un système fondamental de voisinages connexes dans dB(a).

Preuve. Toute pièce de profondeur n rencontre B(a) suivant des secteurs

du type Q(2_1//J', r, r7) car son bord est formé, dans B(a), (de morceaux) de

rayons rationnels et de l'équipotentielle de niveau 2~l/d". Par ailleurs, comme

x appartient à Pn(x)OdB(a), il possède un voisinage dans Pn(x) qui rencontre

B(a). Ce voisinage rencontre alors un secteur Q(2~lfd'\ r, t') C Pn(x) P\ B(a)
où Ra(r), Ra(r') font partie de dPn(x). Ainsi, l'intersection

u„= H ß("' r' T') C
ue] o,i[

est un voisinage de x dans dB(a), compact et connexe (c'est une intersection
décroissante de parties compactes connexes). Comme l'intersection des pièces

Pn{x) se réduit au point x, la suite Un constitue un système fondamental de

voisinages connexes de x dans dB(a).

2.5 Cas d'un bout critique périodique

On considère à présent le graphe F parmi T(6) et T(1 — 0) qui bague

le point critique libre —a (à la profondeur 0 ou 1) et on suppose que
le bout de —a est &-périodique. D'après le théorème de Yoccoz 1.10,

l'application fk : Pm±k(—a) Pm(~û) est à allure quadratique — pour un

entier m assez grand — et son ensemble de Julia rempli K est l'impression

Imp (—a) H Pn(—a). Deux cas se présentent alors. Si B(a) n'intersecte
n> 0

pas K, la connexité locale de dB(a) découle encore une fois du théorème de
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