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disty (a(®), Yas1() < CA°7",

ce qui entraine la convergence uniforme voulue.  []

Si maintenant —a est dans B(a), alors f~'(B(a)) = B(a). Il en découle
’égalité OB(a) = J(f) = OB(c0). En effet, tout point x qui n’est pas dans
B(a) a un voisinage V disjoint de B(a). Par suite, toutes ses images it€rées
(V) évitent B(a), ce qui montre que la famille {f"} est normale sur V,
donc que x n’appartient pas a J(f). On applique alors a une représentation de
Bottcher ¢: D — B(co) le méme raisonnement que plus haut pour montrer
que OB(a) est une image continue du cercle.

Il reste a voir que OB(a) est bien une courbe de Jordan. On distingue
deux cas :

Si —a est dans B(oo), la représentation conforme ¢,: D — B(a) est bien
définie et le résultat découle alors du lemme 2.5.

Si —a est dans B(a), en conjuguant f par une transformation de Maebius
® qui échange a et oo, on obtient un polyndme g qui possede un point fixe
super-attractif ®(oco) et dont le bassin immédiat (P(B(co))) ne contient pas
d’autres points critiques. Dans ce cas on a bien une représentation conforme
du bassin immédiat a laquelle on peut alors appliquer le lemme 2.5.

2.4 CONSTRUCTION DE GRAPHES ADMISSIBLES

On suppose désormais que le point critique libre —a n’est ni dans B(a)
ni dans B(co) et on regarde le polyndme f comme une application a allure
rationnelle de X’ dans X ou

X=C\ (¢.((1/2D) Us((1/2D)) et X' =f"'X).

FIGURE |
Le graphe T'(0) avec, en gris, le bassin immédiat B(a) privé de (;’)(,((1/2)D)
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Pour construire un graphe admissible, on observe d’abord que, pour tout
[>1, I'angle 6 = 1/(d’ — 1) est, modulo 1, [-périodique par multiplication
par d. D apres le théoreme 2.4-a), le rayon R,(#) converge donc vers un point
périodique x répulsif ou parabolique. En prenant / assez grand, on s’assure
d’une part que ['orbite positive du point critique —a est disjointe de celle
de x et d’autre part que x est répulsif (en effet, f possede au plus une orbite
périodique parabolique car tout orbite de ce type attire un point critique). Le
théoreme 2.4-b) fournit alors un rayon externe périodique R(7) qui aboutit
en x. Avec ces rayons, on forme”) le graphe admissible suivant:

I'0) =0xU <X N (U R.(d'0) UR((d + 1)%7))) .
i>0
Sur le cercle identifié a [0,1]/(0 ~ 1), les angles d'0, 0 < i < [—1,
sont rangés en ordre croissant. On va maintenant vérifier que le graphe I'(9)
satisfait les hypotheses du théoreme 1.10.

On distingue deux types de picces de profondeur O découpées par I'(6),
selon que leur bord est formé, en dehors de 09X, de quatre rayons — deux dans
B(a), deux dans B(oco) — ou simplement de deux rayons externes. Comme
on s’intéresse surtout aux pieces du premier type, on appellera losange tout
ouvert de C dont la frontiere est I’adhérence d’exactement quatre rayons
d’angles rationnels dont deux sont dans B(a) et les deux autres dans B(co).
Les propriétés suivantes sont immédiates :

1) tout losange rencontre B(a) \ {a} suivant une partie stricte;

2) si U et V sont deux losanges tels que U NV N B(a) = {a}, alors
UNnvV={a,o};

3) l'union de deux losanges qui s’intersectent est soit un losange, soit
C \ {a,o0};

4) si U et V sont deux losanges tels que f(QU) = 0V, f(U) rencontre
V N B(a) et si U intersecte B(a) dans un secteur angulaire d’ouverture

strictement inférieure a 1/d (i.e. si 6; < 6, sont les arguments des rayons
de OU N B(a) alors 6, —6; < 1/d) , alors UN B(a) C f~1(V).

Pour le point 4), il suffit de voir que U N B(a) ne coupe pas de préimages du
bord de V. Ceci découle du fait que I’ouverture angulaire est trop petite pour
intersecter f~'(AV) N B(a), puisque OU est déja dans f~1(OV). Par suite, f
envoie U N B(a) dans V N B(a), d’ou I’affirmation.

") Souvent, par abus de langage, on dira qu’un rayon fait partie de ’adhérence ou du bord
d’une piece si cet ensemble contient au moins deux points du rayon. D’autre part, par extension,
on appellera encore rayon toute préimage itérée d’un rayon de B(a).
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On note T';(0) le graphe f! (1"(9)). Les rayons de B(a) qui font partie de
T',(0)\T'(#) ont pour angles les d'60+(j/d), 0 <i<I-1,1<j<d—1, qui
sont tous dans I’intervalle du cercle contenant 0 et délimité par 6 + (1/d) et
f/d (voir la figure 2). On se donne d’autre part un losange U(f) qui contient
R.(0)\ {a} et est bordé par R,(0 + (1/d)), R.(8/d) et deux rayons externes
faisant partie de I'1(0).

0+ 1/d
I—1p — ﬁ
d 9_9\/d+1/d d9+1/d\ .
dob
0 - 0/d
d=19+1/d
FIGURE 2

Le cas d =4, [ =3 vu dans D via ¢, avec, en pointillés, B(a) N T(0),
en continu, B(a) N (I'1(6) \ I(0)) et, en gris, U(8) N B(a)

LEMME 2.8. Tout point de J(f)N (U(@)\F1(9)> est bagué par 1(0) a la
profondeur 0.

Preuve. Lintersection U(0) N X', qui est une union de piéces de pro-
fondeur 1, est relativement compacte dans la piece de profondeur O qui
rencontre R,(0) et qu'on note Py (voir la figure 2). En effet, Py est la trace
sur X d’un losange 130 bordé dans B(a) par R,(6) et R,(8/d+1/d). Comme
1>0+1/d>6/d+1/d et 0<0/d <8, 'intersection U(Q)H(C\ﬁo)ﬂB(a)
est réduite & a. Par suite, U(9) et C \130 ne se touchent qu’'en a — pro-
priété 2) des losanges. Ainsi, U@ NX' C Py. [

LEMME 2.9. Soit 0 = 1/(d' —1) et ¢/ =1/d" —1) avec I' > I+ 1 et

[ assez grand. Tout point de OB(a) est bagué a une profondeur bornée par
l'un des graphes T(0) ou T'(6").

Preuve. On remarque tout d’abord que

((UO\TI®) U (UE)\TIEY)) N X' = (UE) UUE)) N X'
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car les graphes I'j(f) et I';(6') sont disjoints dans X’. Par suite, il suffit

de montrer qu’il existe un entier n > 0 tel que J f_i(U(H) U U(@’))
0<i<n

contienne 0B(a).

L’ouvert U(#) U U(0") est un losange que 1’on note V,, les rayons de
B(a) inclus dans 0V, sont d’angles n =0"+1/d, ( =6/d. On note n le
plus petit entier tel que n/d" < (, on va construire, pour 0 < m < n, un
ouvert V,, ayant les propriétés suivantes:

e V,NOB(a) estinclus dans |J f~i(Vy);

0<i<m

e V,, pour m < n, est un losange qui contient R,(1/d™) et est bordé

dans B(a) par R,(1/d™) et Ry(C):

e V,=C\{a}.

I existe un losange V| contenant R,(1/d) et bordé dans B(a) par R,(n/d),
R,(¢/d + 1/d), dont tout le bord est inclus dans f~!1(OVy). Alors, d’aprés
la propriété 4), Vi N B(a) C f~1(Vy). Comme (/d + 1/d > n, les losanges
Vi et Vy s’intersectent et V; = VU V| est un losange ayant les propriétés

demandées. On construit de méme un losange V/ pour tout m < n et on
pose V,, =V UV,_;. O

¢/d+1/d

Vo

FIGURE 3

Illustration de la démonstration du lemme 2.9

REMARQUES.

a) Toutes les constructions précédentes et en particulier les lemmes 2.8
et 2.9 restent évidemment valables si on prend des graphes d’angle opposé
i.e. d’angle 1 — @ avec 0 toujours de la forme 1/(d' — 1).

b) La profondeur a laquelle on parvient a baguer les points de 0B(a) est
bornée indépendamment du point considéré, mais croit avec [ et /’. Ce fait est
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insignifiant puisque I’on obtient finalement, d’aprés le lemme 1.12, que tout
point de 9B(a) est infiniment bagué par un graphe I'(f) avec ¢ = 1/ —1)
et [ assez grand.

D’aprés la remarque b) précédente, il reste & baguer le point critique —a
(qui se trouve dans K(f)) et conclure par le théoréme 1.10. On a le lemme
suivant :

LEMME 2.10. Il existe lp € N et 6 € {£1} dépendant uniquement de

a tels que pour tout 1 > ly, le point critique libre —a est bagué a la
profondeur 0 ou 1 par T(60) ou O est de la forme 1/(d' —1).

On assimile dans cet énoncé —6@ et 1 — 0.

Preuve. Pour d > 2, et [ assez grand, ’ensemble U(#) contient tous les
rayons R,(1), t € [1/2,1] et U(1 — ) tous les rayons R,(t), t € [0,1/2]. De
ce fait, U()UU(1 —6) contient B(a)\ {a}; c’est donc C\ {a} en vertu des
propriétés 1) et 3) des losanges. De plus, comme les graphes sont admissibles
(on prend [y grand dans ce but), —a n’est sur aucun graphe de profondeur 1.
Ceci résout le cas d > 2.

Pour d = 2, 'ouvert U(0) U U(1 — 0) ne recouvre plus B(a). Néanmoins,
pour tout [ > —loge/logd ou € est un rationnel petit, U(#) contient tous les
rayons R,(t), t € [1/2+¢,1] et U(1—0) tous les rayons R,(r), t € [0,1/2—¢].
On suppose donc désormais que le point critique —a est dans un losange V
bordé par R,(1/2+¢), R,(1/2 —¢€) et contenant R,(1/2). Pour voir que —a
est bagué a la profondeur 1, comme a priori il se peut que V contienne
une partie d’une préimage de B(a), on va montrer que la valeur critique
f(—a) est baguée a la profondeur O et plus précisément qu’elle se trouve dans
C\Vcu®@uu( —6).

On suppose donc que f(—a) est dans V, qui est un disque. Comme f
est de degré 3 et que —a est simple, f~'(V) est formé de deux disques et
ceux-ci ne touchent pas f~'(9V). Or il y a deux losanges Vi, V, évidents

qui ont leur bord inclus dans f~!'(AV), contiennent respectivement R,(1/4),
R,(3/4) et vérifient

1 ¢ 3 ¢
wedeom @ neg
1 5 C oV, et Ra4:i:2 C oV,.
Par suite, les deux composantes de f~!(V) sont incluses dans ViuV, qui
contient donc —a et est disjoint de V. [
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En résumé, les lemmes 2.9, 2.10 et 1.12 garantissent que, pour tout point x
de 0B(a), 'un des graphes I'(d), ou I'(1 — 6) bague infiniment x et bague le
point critique —a. Le théoréeme de Yoccoz 1.10 et le lemme 2.11 ci-dessous
assurent alors que 0B(a) est localement connexe en x ce qui achéve la preuve
du théoréeme 2.1, sauf dans la cas ou le bout de —a est périodique et si x
tombe dans Imp(—a) par itération. C’est ce cas qu’il reste a étudier dans la
partie suivante 2.5.

Pour trouver des voisinages connexes d’un point x de 9B(a), on va extraire
de chaque intersection P,(x) N OB(a) un voisinage connexe de x dans OB(a)

qui est de la forme () O, 7,7") avec 7,7 € Q/Z ou
ue]0,1]

O, 7,7") = {@u(r®™) | r € Ju, 11, t € 17,7'[} .

LEMME 2.11. Tout point x de OB(a) dont 'impression () P,(x) est ré-
n>0
duite a x posseéde un systeme fondamental de voisinages connexes dans OB(a).

Preuve. Toute piece de profondeur n rencontre B(a) suivant des secteurs
du type 0@~ d", 7,7") car son bord est formé, dans B(a), (de morceaux) de
rayons rationnels et de I’équipotentielle de niveau 2~'/¢" . Par ailleurs, comme
x appartient a P,(x)N0IB(a), il possede un voisinage dans P,(x) qui rencontre
B(a). Ce voisinage rencontre alors un secteur 0~V 7'y C P,(x) N B(a)
ou R,(7), R.,(7") font partie de OP,(x). Ainsi, I’intersection

Uo= [ Ou,7,7)CP,x)
u€10,1[
est un voisinage de x dans dB(a), compact et connexe (c’est une intersection
décroissante .de parties compactes connexes). Comme 1’intersection des pieces
P,(x) se réduit au point x, la suite U, constitue un systeme fondamental de
voisinages connexes de x dans OB(a). L]

2.5 CAS D’UN BOUT CRITIQUE PERIODIQUE

On consideére a présent le graphe I' parmi I'(6) et I'(1 — 6) qui bague
le point critique libre —a (a la profondeur 0 ou 1) et on suppose que
le bout de —a est k-périodique. D’apres le théoreme de Yoccoz 1.10,

’application f*: Pii(—a) — P,(—a) est & allure quadratique — pour un

entier m assez grand — et son ensemble de Julia rempli K est I’'impression

Imp(—a) = () Pn(—a). Deux cas se présentent alors. Si B(a) n’intersecte
n>0

\
b

pas K, la connexité locale de 0B(a) découle encore une fois du théoréme de J‘
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